

Caraly Christon
Pac/Perm/Co ID# Date Doc ID#
92-31 10/8/12 DIN

November 15, 2007

Department of Environment and Natural Resources Division of Waste Management Solid Waste Section 401 Oberlin Road, Suite 150 Raleigh, North Carolina 27605 919-733-4996

Attention:

Ms. Jackie Drummond

Hydrogeologist

Re:

Material Recovery, LLC Construction & Demolition Landfill, Permit No. 92-31

Wake County, North Carolina Alternate Source Demonstration

Dear Ms. Drummond:

Material Recovery, LLC, a subsidiary of Waste Corporation of America (WCA), is submitting the enclosed *Alternate Source Demonstration* (ASD), which evaluates the presence of trichlorofluoromethane in the groundwater sample collected from well MW-3 during the first semiannual event of 2007, conducted on June 28-29, 2007, at the above-referenced facility. The results of the first semiannual routine monitoring event are submitted under separate cover. If you have any questions, please contact Rachel Kirkman with Golder Associates NC, Inc. at 336-852-4903 or myself at 954-415-7230.

Sincerely,

WASTE CORPORATION OF AMERICA

Nick Marotta Regional Engineer

Enclosure

cc:

Vernon Smith, Regional Vice President, WCA of North Carolina, 40 Estes Plant Road, Piedmont, SC 29763, 864-845-8355. (letter only)

Dennis Gehle, General Manager, Material Recovery, LLC, 2600 Brown-Field Road, Raleigh, North Carolina, 27610, 919-838-6973. (letter only)

Rachel P. Kirkman, P.G., Senior Project Geologist, 4900 Koger Boulevard, Suite 140, Greensboro, North Carolina, 27407. rkirkman@golder.com. 336-852-4903. (letter only)

Golder Associates NC, Inc.

4900 Koger Boulevard, Suite 140 Greensboro, NC 27407 Telephone (336) 852-4903 Fax (336) 852-4904

November 5, 2007

Project No. 0739602407.100

Waste Corporation of America 625 Spencer Drive Ft. Walton Beach, FL 32547

Attention:

Mr. Nick Marotta, P.E.

Regional Engineer

Re: Material Recovery, LLC Construction and Demolition Landfill, Permit No. 92-31

Wake County, North Carolina Alternate Source Demonstration

Dear Nick:

On behalf of Material Recovery, LLC, a subsidiary of Waste Corporation of America (WCA), Golder Associates NC, Inc. (Golder) is submitting this *Alternate Source Demonstration* (ASD), which evaluates the presence of a volatile organic compound (VOC) detected in groundwater samples collected during the first semiannual event of 2007, conducted on June 28-29, 2007 at the Permit No. 92-31 Construction and Demolition (C&D) Landfill. The results of the first semiannual routine monitoring event are submitted under separate cover.

On June 28-29, 2007, groundwater samples from the site monitoring wells were voluntarily analyzed for the parameters listed in Title 15A NCAC 13B.0544 of the North Carolina Solid Waste Management Rules (NCSWMR). The facility is currently subject to Title 15A NCAC 13B.0601 under its existing approved Water Quality Monitoring Plan prepared by Joyce Engineering, Inc. (JEI) in 2001. Currently no groundwater corrective action for Phase 1 of the landfill is required under the old C&D Rules and the facility's approved Water Quality Monitoring Plan, under which the facility is permitted.

The results of the June 2007 sampling event indicated that TCFM is present in the groundwater sample collected from monitoring well MW-3 at a concentration that is greater than its Solid Waste Section Limit (SWSL). Confirmation sampling for TCFM was conducted for MW-3 on August 9, 2007. At that time, groundwater samples from MW-3 were also collected for analysis of additional water quality parameters; samples were also collected from background well MW-1 for water quality parameters. The re-sampling results confirmed the presence of TCFM in MW-3 at a concentration that exceeds the SWSL.

The purpose of this ASD is to determine the source of trichlorofluoromethane (TCFM) detected in the groundwater samples. The two possible sources of TCFM evaluated as part of this ASD are landfill-derived leachate and landfill gas.

Using the data collected during the June and August 2007 sampling events, this ASD was conducted to evaluate the potential sources of the TCFM concentrations observed in groundwater samples collected from MW-3, which is located downgradient of Phase 1 of the landfill. The following sections discuss the data evaluations that were completed as part of this ASD in consideration of the two sources that were identified as potential sources of the TCFM observed in MW-3.

LANDFILL GAS SOURCE EVALUATION

Although no site-specific data on VOC concentrations in landfill gas are available, Golder evaluated the highest and lowest TCFM concentrations observed in samples collected from the affected monitoring well to determine the landfill gas concentration of TCFM required to achieve the concentrations observed in the groundwater, assuming landfill gas-to-groundwater transfer of the TCFM (Table 1). The evaluation was performed using the dimensionless form of the Henry's Law Constant (H) for TCFM, since the dimensionless form of H is a gas-water partitioning coefficient. In the example below, the lowest observed TCFM concentration was used to evaluate the landfill gas concentration required to create the lowest dissolved phase concentrations of TCFM.

Analytical Solution: H = Concentration in gas / Concentration in water

or:

Concentration in gas = H * Concentration in water

Where:

H (dimensionless)

Concentration in gas [parts per billion (ppb)]

Concentration in water [micrograms per liter (ug/L)]

Observed constituent of concern concentration in groundwater:

TCFM concentration = 11.0 ug/L $H_{\text{TCFM}} = 3.955$

Mole conversion factor for TCFM = $1 \text{ppm}: 5.614 \text{ mg/m}^3$

Estimated gas concentration necessary to obtain observed groundwater concentrations:

To express in ppm:

$$TCFM_{gas} = \frac{43.51 \text{ mg}}{\text{m}^3} \frac{\text{m}^3}{5.614 \text{ mg}}$$
 $TCFM_{gas} = 7.75 \text{ ppm}$

As presented, the theoretical landfill gas concentration required to produce the lowest concentration of TCFM reported in groundwater is approximately 43.51 milligrams per cubic meter (mg/m³). Headspace samples obtained from the column of air above the groundwater table in MW-3 were collected on September 6, 2007, and analyzed using analytical method TO-15 for

VOCs. Golder made an attempt to collect a headspace sample in MW-3 on August 9, 2007; however, a viable sample was not obtained due to sample matrix interferences. A groundwater sample was also collected from MW-3 for the analysis of TCFM on August 9, 2007.

The analytical results indicated that TCFM was not detected in the headspace sample from MW-3 at a concentration greater than the method detection limit of 0.006 (mg/m³). Therefore, it is unlikely that landfill gas concentrations are sufficient to partition into the groundwater phase based on these results alone. However, this conclusion assumes that the concentrations observed in the headspace sample collected from MW-3 are representative of landfill gas concentrations. It is likely that the concentrations of landfill gas generated within the waste footprint are higher and therefore may contain higher concentrations of VOCs as compared to well headspace samples. MW-3 is located approximately 100 feet north and downgradient of the limits of waste.

LEACHATE SOURCE EVALUATION

To evaluate landfill leachate as a potential source of TCFM concentrations detected in groundwater samples collected from MW-3, Golder prepared a series of scatter graphs, Piper Diagrams, and Stiff Diagrams to illustrate the variability in the geochemistry of the water for the various monitoring points of interest.

Golder compared the major anion and cation concentrations of groundwater samples collected from an upgradient and a downgradient well, and compared those concentrations through leachate mixing scenarios. As this facility is unlined and does not have a leachate collection system, site-specific leachate samples were not available for laboratory analysis. Various literature sources are cited where typical leachate concentrations for C&D landfills have been compiled and are used in this ASD to represent a typical leachate sample (Table 2). Comparisons to typical C&D leachate values have been made using standard Piper and Stiff Diagrams of the major anion and cation concentrations.

A summary of the data used to prepare the graphs and diagrams is presented in Appendix A (Summary of Analytical Results) and Appendix B (Sample Summary Reports).

Piper Diagram Analysis

Figure 1 is a Piper Diagram illustrating the variations in the geochemical facies for the monitoring points sampled as part of this investigation; it also shows a typical facies for C&D landfill leachate. As presented in Figure 1, the typical leachate composition exhibits a calcium-magnesium-sodium-potassium-bicarbonate-sulfate geochemical facies. Upgradient monitoring well MW-1 exhibits a sodium-potassium-chloride geochemical facies. Downgradient monitoring well MW-3 exhibits a calcium-magnesium-sodium-potassium-chloride facies.

Review of Figure 1 suggests that it is unlikely that a mixture of leachate and upgradient waters (MW-1) will yield geochemistry similar to MW-3, since MW-3 would need to plot between the upgradient waters and the leachate, assuming a conservative mixing scenario with no precipitation interference. Note that the sample cation and anion concentrations presented in the Sample Summary Reports in Appendix B are well below saturation concentrations for normal temperature and pH conditions in most shallow groundwater environments; therefore, we would expect conservative mixing to occur.

Stiff Diagram Analysis

Figure 2 presents a fixed-scale Stiff Diagram for the monitoring points sampled as part of this investigation; it also shows a typical facies for C&D landfill leachate. As presented in Figure 2, the groundwater signatures are generally overwhelmed by the leachate sample on the fixed-scale Stiff Diagrams (set to the scale used to plot the leachate), due to the relatively low cation and anion concentrations in MW-1 and MW-3 relative to the leachate, making the shape signatures difficult to observe.

Figure 3 shows sliding-scale Stiff Diagrams, which better present the shape signatures for these groundwater samples relative to the typical leachate composition. As presented, groundwater samples from MW-1 and MW-3 do not exhibit a geochemical signature similar to that of the typical leachate composition. MW-1, the upgradient well, exhibits a markedly dissimilar shape, with major differences in the calcium and bicarbonate area relative to the other cation-anion pairs. The sample collected from monitoring well MW-3 exhibits a shape signature that is more similar to the leachate signature for the cations; however, the bicarbonate and sulfate are depleted relative to the typical leachate composition.

If a single source (i.e., leachate) were the source of the detected TCFM concentrations in MW-3, we would expect the shape for the affected monitoring well to bear some resemblance to, or a general morphology trending towards, the leachate shape. Based on the morphological changes in the shape of the Stiff Diagrams from the upgradient well (MW-1) to the downgradient well (MW-3), and considering that the general groundwater flow path between MW-1 and MW-3 transects the Northern Disposal Area, an increase in major ion concentration is apparent; however, this increase in major ion chemistry could be related to the accumulation of ions along the groundwater flow path through the dissolution of aquifer materials.

One potential explanation for the increase in major cation geochemistry may have to do with the composition of feldspar minerals in the aquifer material. The granitic bedrock present on site, which is rich in feldspar mineralogies, has been described in the Hydrogeologic Report submitted as part of the permit application (JEI, 2000). Feldspar compositions are generally of two varieties: alkali feldspars having a composition that comprises a solid solution series between potassium and sodium rich varieties; and plagioclase feldspars having a composition that comprises a solid solution series between calcium and sodium rich varieties. Consequently, it is possible that monitoring wells MW-1 and MW3 are screened in areas rich with one or more sodium and calcium rich feldspar minerals, and the variation in cation concentration may be due to local variations related to the dissolution of the parent aquifer material. Thus, the fact that the cation shape of the stiff diagram for MW-3 is somewhat similar to that for typical leachate does not necessarily indicate leachate impacts.

Simulated Leachate Impacts

In addition to analyzing the existing variations in aquifer geochemistry at the site, Golder modeled potential leachate impacts to the affected downgradient well at the facility using an analytical solution. Two models were run. The first model was based on simple mixing, where selected proportions of the leachate (1%, 2%, 3%, 4%, and 5%) and upgradient MW-1 water (99%, 98%, 97%, 96%, and 95%) were mixed to evaluate the potential evolution of groundwater that was hypothetically being impacted by leachate. The simulated simple mixing model results are summarized in Table 3.

The data summarized in Table 3 are shown graphically on Figures 4, 5, 6, and 7 by the symbols representing percentages of leachate in the mixture (1%, 2%, 3%, 4%, and 5%). These plots illustrate the likely trend that a downgradient well would follow as the geochemistry of the affected well changes due to impacts from leachate, on the basis that the geochemistry for unimpacted downgradient wells is similar to that observed in the upgradient water. As presented, with the exception of Figure 6 (Chloride vs. Na+K Scatter Plot), MW-3 does not plot within an acceptable range of the mixing line between MW-1 and the leachate composition. Major ion concentrations increase in the downgradient direction; however, based on the typical C&D landfill leachate composition used in this evaluation, one would expect a downgradient accumulation of the anions (bicarbonate, sulfate and chloride).

The second model was run using an equally weighted parameter optimization criterion based on the lowest achievable Euclidean distance between the calculated mixture and the specified sample to simulate the optimum mixing proportions of leachate and the selected upgradient groundwater for achieving the specified sample (i.e., each affected downgradient well). The mixing scenario involved the upgradient water from MW-1 based on the August 2007 results. The simulated optimized model results are summarized in Table 3, and illustrated on scatter graphs (Figures 4 through 7).

As presented in Table 3, the model results indicate that the optimum mixing proportions for leachate and MW-1 waters to achieve the closest approximation to MW-3 waters is 6% leachate and 94% MW-1 waters, based on the August 2007 data. The results of the simulated mixing are presented graphically on sliding-scale Stiff Diagrams in Figure 8.

As presented on Figure 8, the optimized MW-3 sample partially resembles the leachate (i.e., similar cation distribution); however, the lack of bicarbonate and sulfate significantly alter the shape of the Stiff plot for MW-3. Based on these results, it is apparent that the geochemistry of MW-3 cannot be replicated by a simulated leachate release of typical C&D landfill composition using the facility's upgradient groundwater chemistry as the base solution for the simulations, assuming that there is no precipitation of the ions of interest.

CONCLUSIONS

The potential sources evaluated for the TCFM concentrations detected in downgradient monitoring well MW-3 include potential groundwater impacts from soil gas and leachate derived from the waste disposal area. An evaluation of the potential for soil gas impacts to groundwater was carried out by back calculating, based on Henry's Law, the necessary soil gas concentration required to produce the observed dissolved concentration of TCFM in the groundwater. The results indicated that a significantly high concentration of TCFM in soil gas would be required. Headspace analysis of accumulated vapors in affected downgradient well MW-3 indicated that TCFM was not present at levels greater than the detection limit of 0.006 mg/m³.

However, the concentrations of VOCs are expected to be much higher in and around the waste footprint and the air sample collected in the headspace of MW-3 may not be representative of typical concentrations. Without a source area sample from the within the waste footprint (i.e., a sample from a landfill gas extraction well), landfill gas impacts to groundwater cannot be ruled out as a potential source of the TCFM. Methane was measured in the headspace of MW-3 at a concentration of 1% by volume during the June 2007 sampling event and can significantly vary daily based on precipitation and barometric pressure.

The leachate source evaluation is also inconclusive since it is based on the assumption that the typical leachate composition used in the evaluation is representative of the leachate that may be present in the subsurface at the facility. Provided that the typical leachate composition is representative, then the variation in ion concentrations between the upgradient monitoring well MW-1 and the downgradient monitoring well MW-3 cannot be adequately explained by mixing the typical leachate composition with the groundwater composition observed in samples collected from MW-1. This finding does not support the hypothesis that the TCFM observed in MW-3 is derived from leachate impacts to the groundwater system.

The simplest explanation of the variation between cation concentrations in the groundwater samples collected from MW-1 and MW-3 may be the dissolution of the aquifer materials and the subsequent downgradient accumulation of dissolved ions. In our opinion, this accumulation of dissolved ions leached from the aquifer matrix is the most likely explanation of the geochemical variation observed between samples from MW-1 and MW-3. Figure 9 illustrates a similar example from a collaborative project, located in Wake County, NC, between the USGS and NCDENR. Figure 9 shows Stiff diagrams between an upgradient well cluster and a downgradient one that illustrate an increase in ion concentrations.

Crushed wallboard is a common component of the waste at this facility and has been used as part of the facility's weekly cover. Wallboard contains gypsum (calcium sulfate). Leachate from the facility would therefore be expected to have a high sulfate component. There was not a significant sulfate component detected in the groundwater sample from MW-3, and sulfate values for background well MW-1 and MW-3 are similar. Since sulfate is expected to be a conservative tracer for leachate impacts in an aerobic environment, such as the conditions present below the water table at this facility, any groundwater impacted by leachate would be expected to contain a significant sulfate component. The sulfate data further support that leachate impacts for MW-3 are unlikely.

Based on the data, analysis, interpretations, and assumptions on leachate composition presented in this report, the most likely sources for the TCFM detected in MW-3 are not landfill-derived leachate. Soil gas impacts to groundwater may be a possible source, although not supported by the concentrations measured in the headspace sample for MW-3. Also, previous land uses at the site in the vicinity of MW-3 include land application of wastewater treatment sludge, which may also be a potential source of VOCs. Therefore, while this ASD has not verified the source of TCFM impacts to groundwater in the vicinity of MW-3, this evaluation has ruled out leachate as a likely source.

Based on this finding and on behalf of WCA, Golder requests that the facility be allowed to continue monitoring groundwater for the parameter listed in Title 15A NCAC 13B.0544 of the NCSWMR. Headspace methane concentrations will continue to be monitored with a methane detection meter in MW-3 during future sampling events to continue to evaluate potential landfill gas impacts to groundwater. Also, in an effort to minimize landfill gas impacts, WCA is evaluating the use of low-flow micropurge sampling techniques for future sampling events. Golder appreciates your review and consideration of this ASD. If you have any questions or require further information, please do not hesitate to contact the undersigned.

Sincerely,

GOLDER ASSOCIATES NO, INC.

Charles G. Pippin, P.G.

Project Geologist

Karle & Krim

Rachel P. Kirkman, P.G. Senior Project Geologist

Attachments:

TABLES

Table 1: Groundwater to Soil Gas Partitioning
Table 2: Typical C&D Landfill Leachate Values

Table 3: Leachate Mixing Model

FIGURES

Figure 1. Piper Diagram

Figure 2. Fixed Scale Stiff Diagram

Figure 3. Sliding Scale Stiff Diagram

Figure 4. Piper Diagram with Modeled Concentrations

Figure 5. HCO₃ vs. Ca Scatter Plot

Figure 6. Na+K vs. Cl Scatter Plot

Figure 7. SO₄ vs. Mg Scatter Plot

Figure 8. Stiff Diagrams Showing Geochemical Facies under Varying Modeling Scenarios

Figure 9. Stiff Diagrams Illustrating Varying Ion Concentrations.

APPENDICES

Appendix A: Summary of Analytical Results; August 9, 2007 Groundwater Analytical Results; September 6, 2007 Groundwater Analytical Results, September 6, 2007 MW-3 Headspace Analytical Results, and Field Sampling Forms.

Appendix B: Sample Summary Reports

cc: Dennis Gehle, General Manager, Material Recovery, LLC, 2600 Brown-Field Road, Raleigh, North Carolina, 27610, 919-838-6973. (letter only)

Vernon Smith, Regional Vice President, WCA of North Carolina, 40 Estes Plant Road, Piedmont, South Carolina, 29673, 864-845-8355. (letter only)

Table 1 Material Recovery, LLC **C&D** Landfill

Groundwater to Soil Gas

Well	Date	Dissolved TCFM (ug/L)	Henry's Law	Calculated Gas Con. (ug/L) or (mg/m ³)	Mole Conversion Factor ug/L to ppb (gas)	Gas Con. (ppb)	Gas Con. (ppm)
MW-3	8/9/07	34	3.955	134.470	0.005614	23952.224	23.952
MW-3 (Dup)	8/9/07	11	3.955	43.505	0.005614	7749.249	7.749
MW-3	9/6/07	31	3.955	122.605	0.005614	21838.792	21.839

Notes:

- TCFM = Trichlorofluoromethane 21 = 2100 mg/m³ = milligrams per cubic meter ug/L = microgram per liter ug/mg = microgram per milligram ppb = parts per billion ppm = parts per million Con. = Concentration Dup = duplicate 1.
- 2. 3. 4. 5. 6. 7. 8.

Table 2 Material Recovery, LLC C&D Landfill

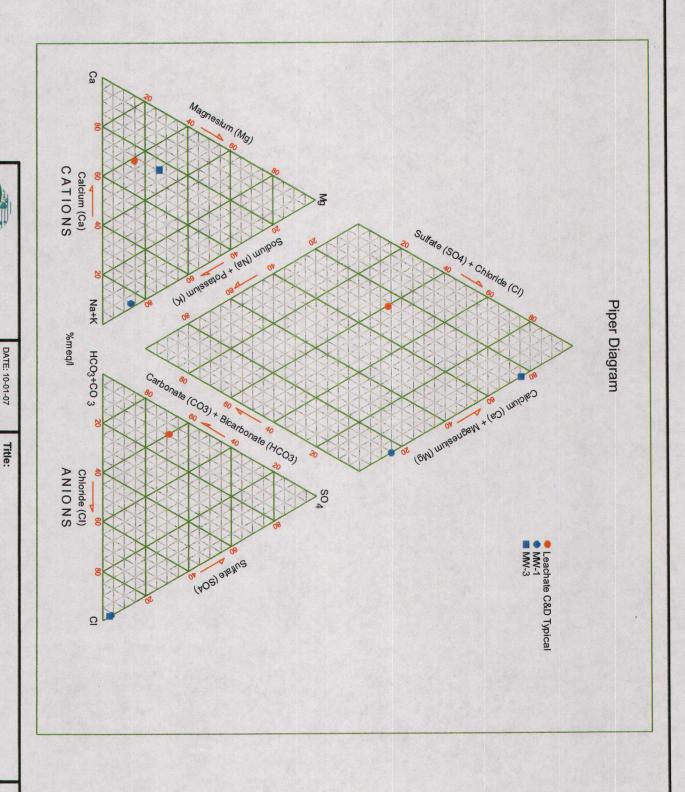
Typical C&D Landfill Leachate Values

Source	A	В	C	D	E (site)	E (test cell)	E (simulated avg.)	F	Geometric Mean
Sodium (mg/L)			ND to 1510			43.3	114	360	191.4
Potassium (mg/L)		,	ND to 618		1	7.5	23.6	82	46.0
Magnesium (mg/L)	 .		ND to 460			20.9	24.6	150	64.9
Calcium (mg/L)	299 to 691	280 to 600	ND to 600	274	140 to 740	530	536	430	419.7
Chloride (mg/L)	12.5 to 62.7	100 to 460	ND to 2400	158	10 to 5720	5.1	16.2	230	134.7
Sulfate (mg/L)	313 to 1138	690 to 1700	ND to 2700	254	1 to 1300	720	794	170	608.5
Alkalinity (mg/L)			ND to 6520			850	852	2100	1492.2
Manganese (mg/L)	0.2 to 2.3	80 to 9800	ND to 258	8.7		0.7	1		13.0
Iron (mg/L)	0.3 to 4.6	20 to 14000	ND to 172	36.8		<0.1	1		35.2
TDS (mg/L)	1360 to 3310	1700 to 5740	ND to 8400	2263	752 to 6000	1900	2300	8600	3180.7
pH (SU)	6.1 to 7.9	6.8 to 7.1	6.2 to 8.0	7	5.9 to 7.8				7.0

Notes

- 1. -- = indicates no data reported from that source.
- 2. ND = Non detect
- 3. mg/L = milligram per liter
- 4. SU = standard units
- 5. Geometric Mean = A geometric mean, unlike an arithmetic mean, tends to dampen the effect of very high or low values, which might bias the mean if a straight average (arithmetic mean) were calculated.
- Sources:
 - a. Walsh, P. and P. O'Leary, 2002. Landfilling Demolition and High Volume Industrial Wastes, Waste Age. pp. 68-74. October.
 - National Association of Demolition Contractors. C&D Waste Landfills, Leachate Quality Data, Volume 1, Specific State by State Response. Prepared by Gersham, Brickner & Bratton, Inc., Falls Church, Virginia. February 18, 1994.
 - c. Melendez, B.A., 1996. A study of Leachate Generated from Construction and Demolition Debris Landfills, 144 pp.
 - d. EPA, 1995. Construction and Demolition Waste Landfills. Office of Solid Waste. Prepared by ICF Inc., Contract No. 68-W3-0008
 - e. Townsend, T.G., et al., 2000. Continued Research into the Characteristics of Leachate from Construction and Demolition Waste Landfills. Florida Center for Solid and Hazardous Waste Management, Report No. 00-04. State University System of Florida. 62 pp.
 - f. Golder Associates Inc., 2007. Private CDD Landfill, Virginia. Annual Leachate Sampling Results

Table 3 Material Recovery, LLC **C&D** Landfill

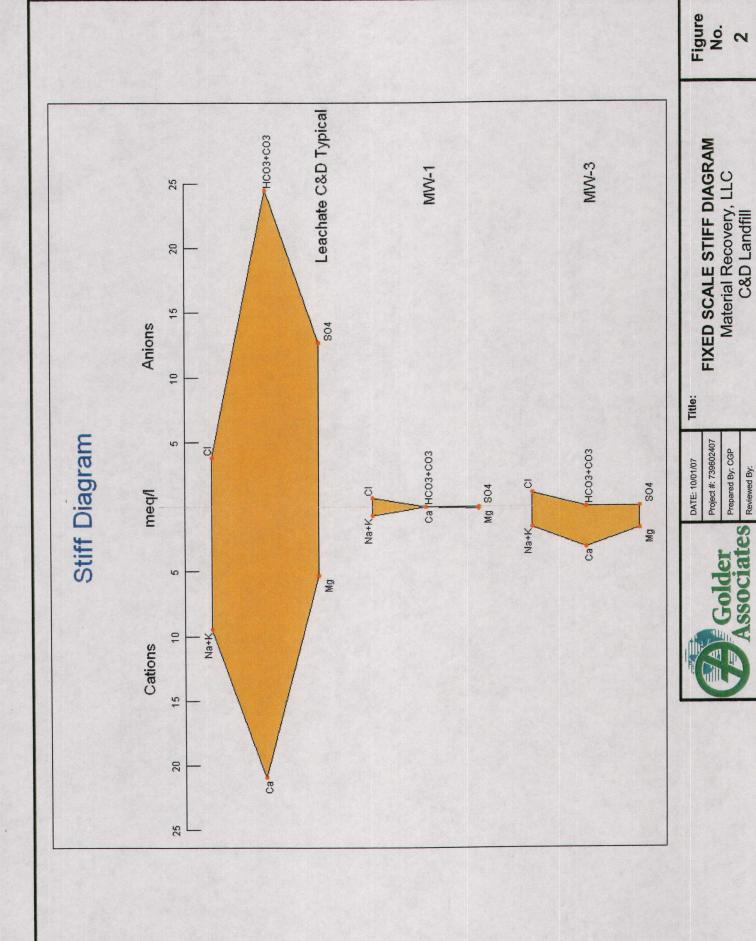

Leachate Mixing Model

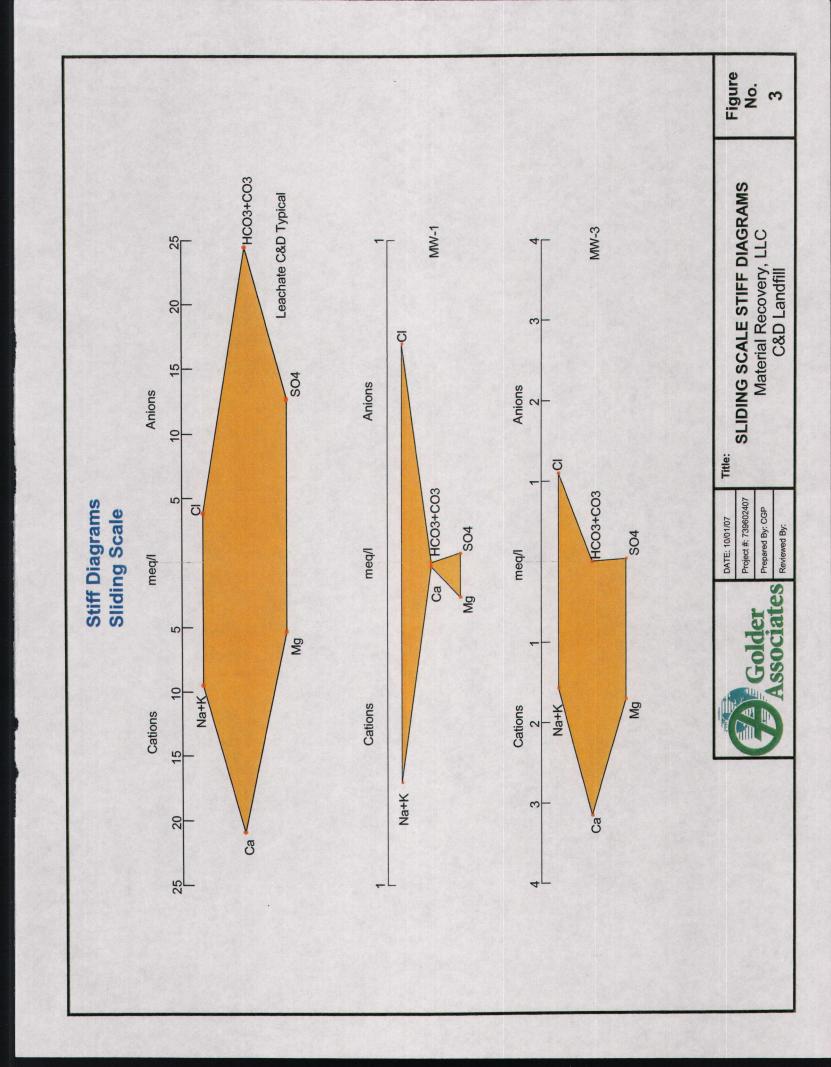
Parameter	Na	K	Ca	Mg	Cl	HCO ₃	SO ₄
Leachate C&D Typical	191.40	46.00	419.70	64.90	134.70	1492.20	608.50
MW-1	13.20	4.21	0.24	1.29	24.00	<5.00	1.40
1% Leachate	14.98	4.63	4.43	1.93	25.11	14.92	7.47
2% Leachate	16.76	5.05	8.63	2.56	26.21	29.84	13.54
3% Leachate	18.55	5.46	12.82	3.20	27.32	44.77	19.61
4% Leachate	20.33	5.88	17.02	3.83	28.43	59.69	25.68
5% Leachate	22.11	6.30	21.21	4.47	29.54	74.61	31.76
MW-3	28.40	13.00	63.20	20.80	39.00	<5.20	1.80
Optimized MW-3	23.89	6.72	25.41	5.11	30.64	89.53	37.83

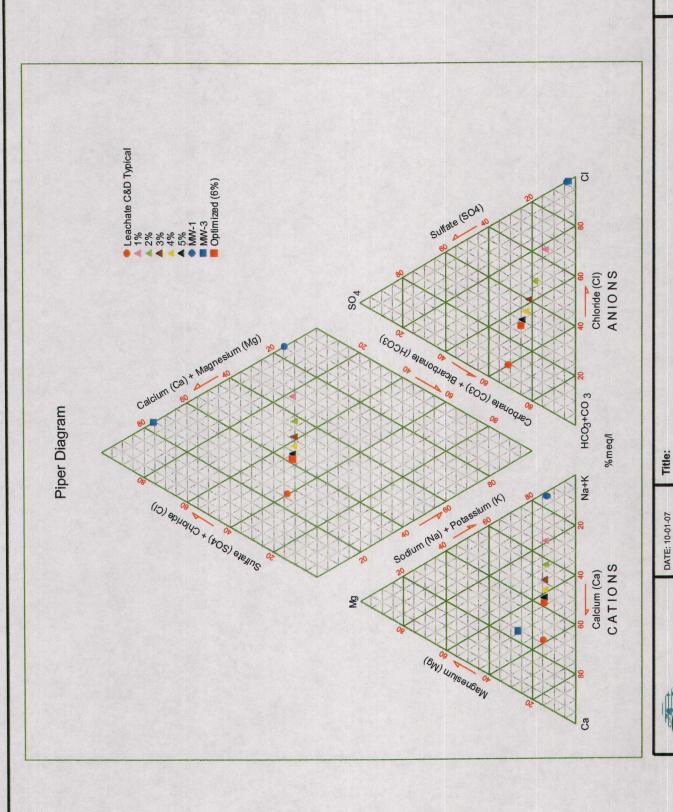
Notes:

- C&D = construction and demolition debris 1.
- % = percent
 % = percent
 Parameters: Na=Sodium, K=potassium, Ca=calcium, Mg=magnesium, Cl=chloride, HCO₃=bicarbonate, SO₄=sulfate
 All units in milligrams per liter (mg/L).
 Optimized MW-3 based on a 6% leachate and 94% MW-1 groundwater mixing scenario.
 HCO₃ = reported values for alkalinity used for Leachate and for MW-3
 < = less than

FIGURES


Project #: 739602407 DATE: 10-01-07

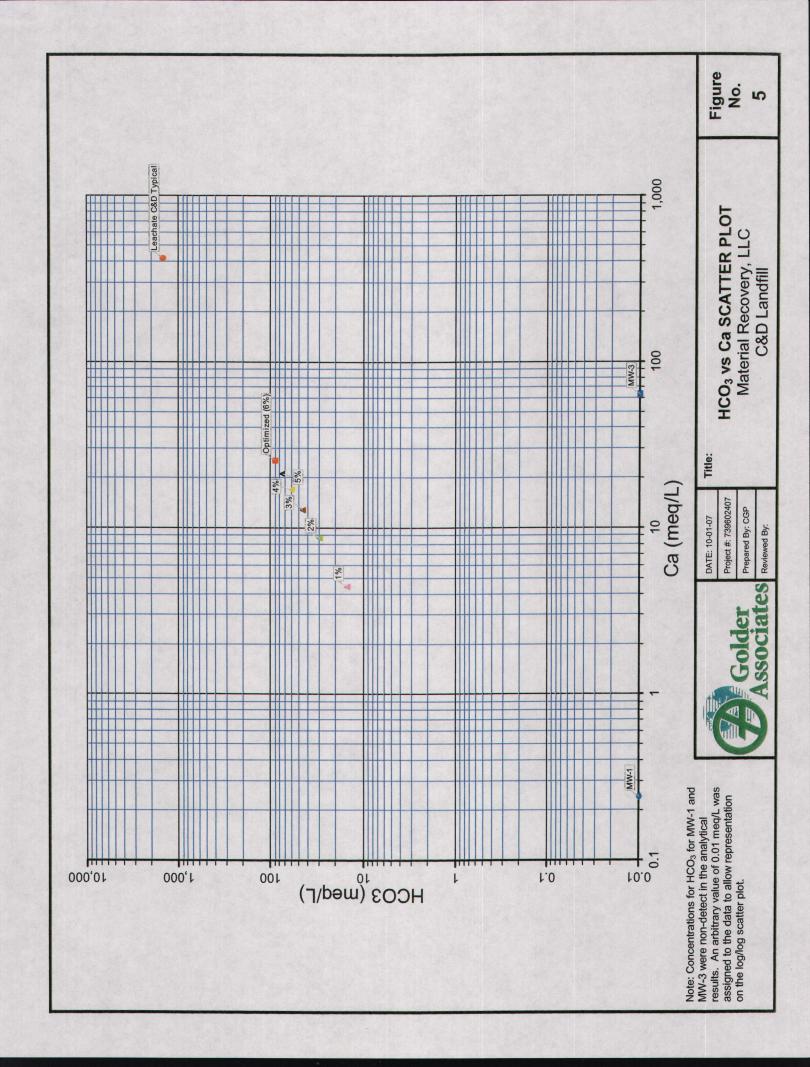

Prepared By: CGP

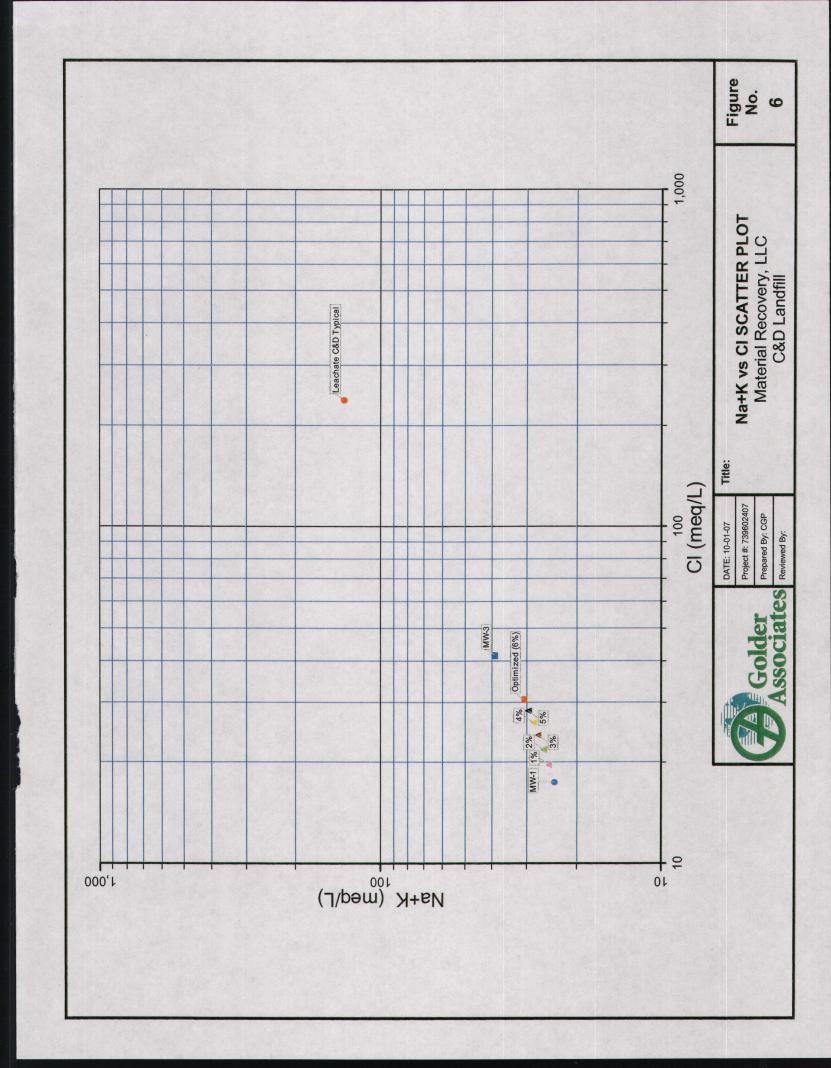

Reviewed By:

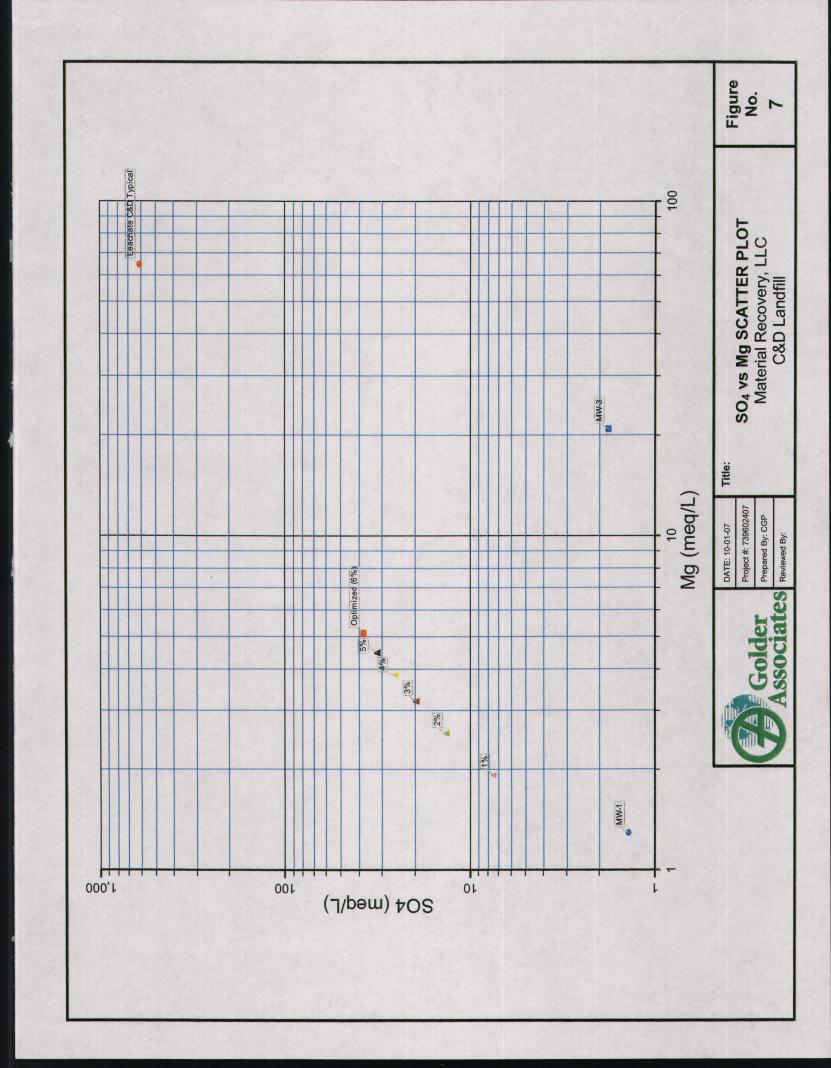
Material Recovery, LLC PIPER DIAGRAM C&D Landfill

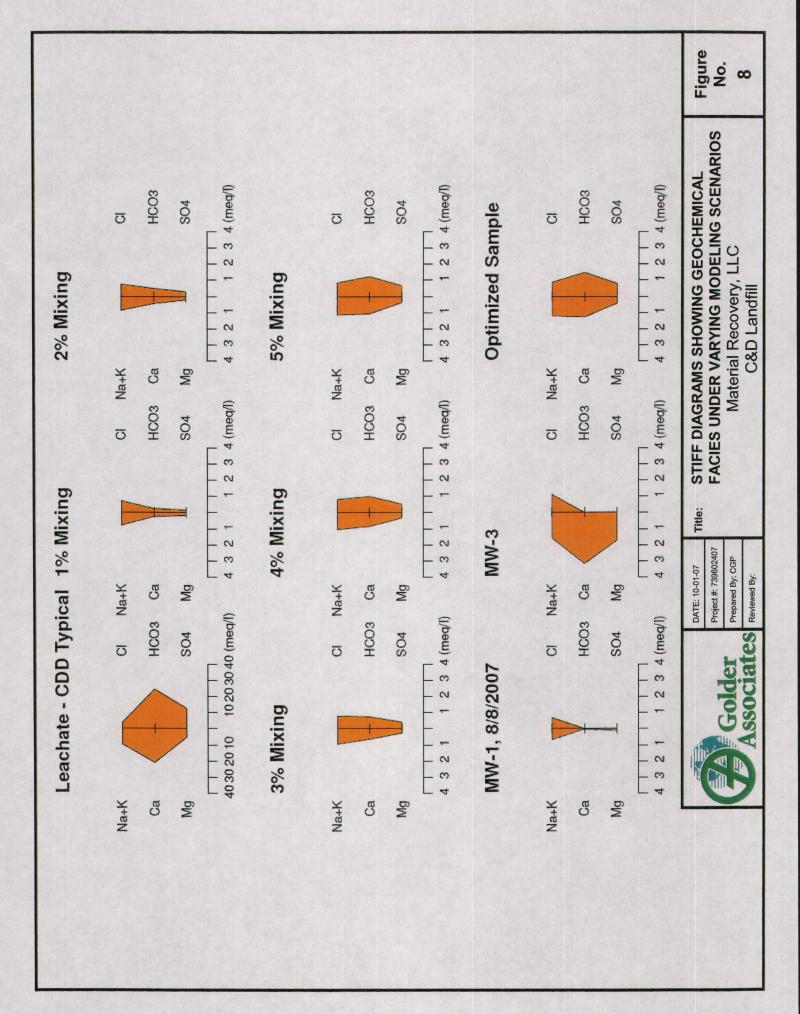
Figure No.

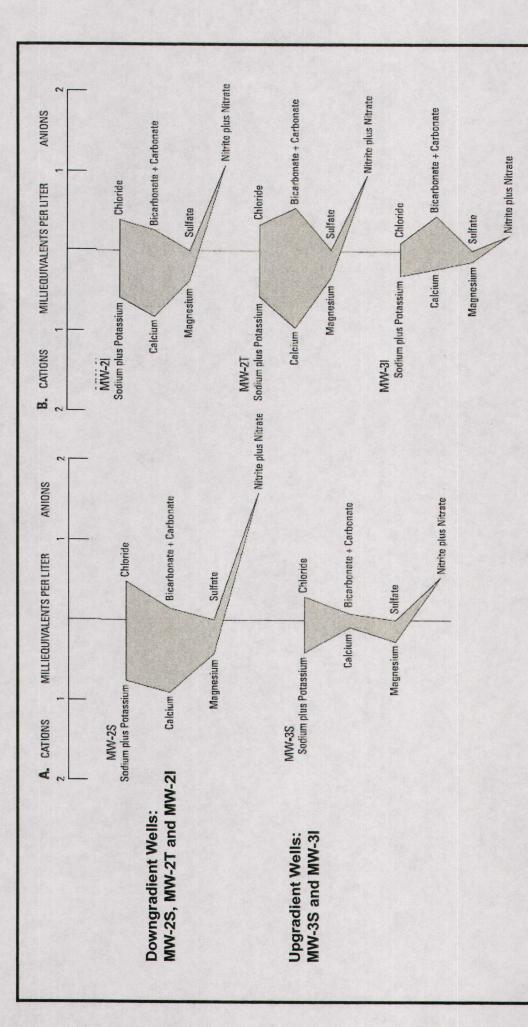
PIPER DIAGRAM WITH MODELED CONCENTRATIONS

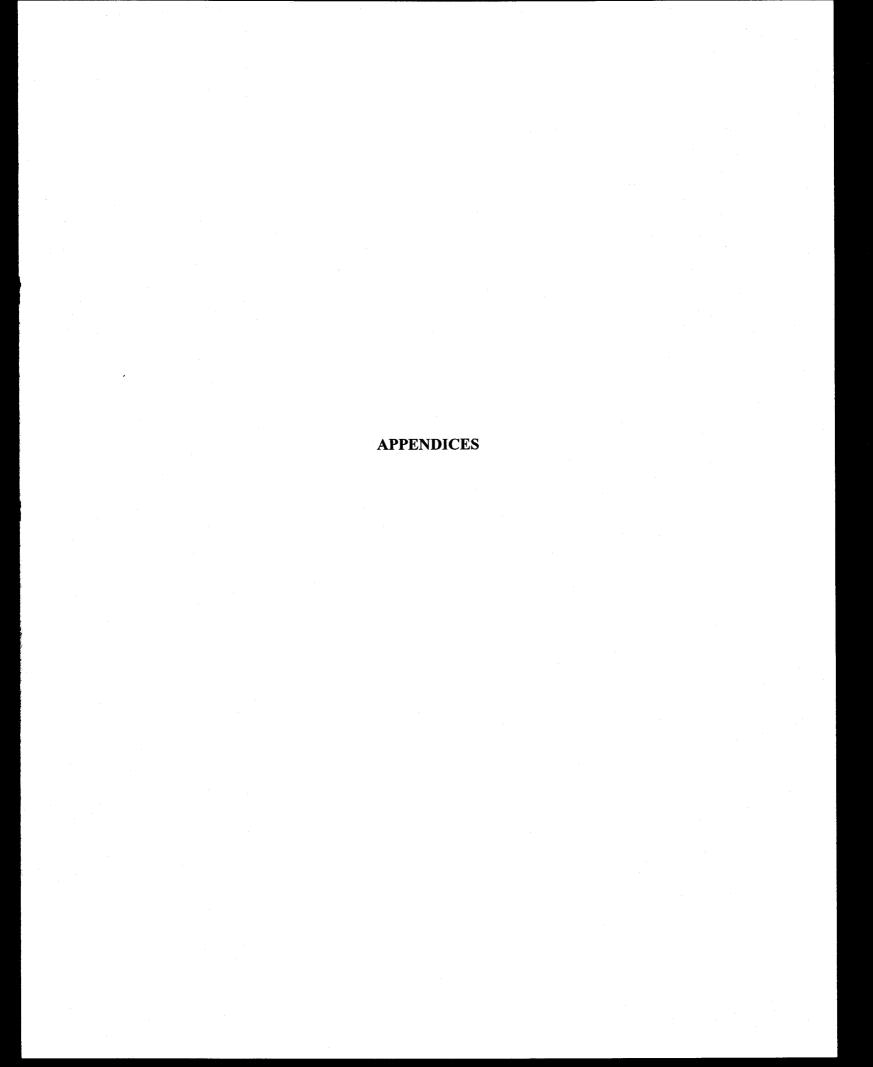

Project #: 739602407 Prepared By: CGP


Reviewed By:


Associates


Material Recovery, LLC C&D Landfill


Figure No.


concentrations, particularly the cations are of similar magnitude as that observed in the Material Recovery, LLC landfill. Image modified from: Chapman, station, 2001–03, North Carolina Piedmont and Mountains Resource Evaluation Program: U.S. Geological Survey Scientific Investigations Report 2005– The Stiff diagrams shown in this figure are from a the Lake Wheeler Road Hydrogeologic Research Station, a collaborative project by the NCDENR and M.J., Bolich, R.E., and Huffman, B.A., 2005, Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research the USGS. The monitoring well MW-3S and MW-3I are approximately 600 feet upgradient from MW-2S, MW-2I and MW-2T. The increase in ion

STIFF DIAGRAMS ILLUSTRATING VARYING ION CONCENTRATIONS

client:
Material Recovery, LLC
C&D Landfill

Figure No.

APPENDIX A

Appendix A Summary of Analytical Results

WELL ID#	COLLECT DATE	Matrix	PARAMETER	RESULT	UNITS	QUALIFIER
MW-1	08/09/2007	GW	Ammonia as N	0.035	mg/L	J
MW-1	08/09/2007	GW	Calcium	236	ug/L	
MW-1	08/09/2007	GW	Chloride	24	mg/L	
MW-1	08/09/2007	GW	Iron	364	ug/L	
MW-1	08/09/2007	GW	Magnesium	1290	ug/L	
MW-1	08/09/2007	GW	Nitrate as N	2.2	mg/L	J
MW-1	08/09/2007	GW	Nitrate/Nitrite as N	2.2	mg/L	В
MW-1	08/09/2007	GW	Potassium	4210	ug/L	
MW-1	08/09/2007	GW	Sodium	13200	ug/L	
MW-1	08/09/2007	GW	Sulfate	1.4	mg/L	J
MW-1	08/09/2007	GW	Total Dissolved Solids	82	mg/L	
MW-3	08/09/2007	GW	Ammonia as N	0.037	mg/L	J
MW-3	08/09/2007	GW	Calcium	63200	ug/L	
MW-3	08/09/2007	GW	Chloride	39	mg/L	
MW-3	08/09/2007	GW	Iron	2920	ug/L	
MW-3	08/09/2007	GW	Magnesium	20800	ug/L	
MW-3	08/09/2007	GW	Mercury	1.28	ug/L	
MW-3	08/09/2007	GW	Nitrate as N	2.3	mg/L	J
MW-3	08/09/2007	GW	Nitrate/Nitrite as N	2.3	mg/L	В
MW-3	08/09/2007	GW	Nitrite as N	0.0064	mg/L	J
MW-3	08/09/2007	GW	Potassium	13000	ug/L	
MW-3	08/09/2007	GW	Sodium	28400	ug/L	
MW-3	08/09/2007	GW	Sulfate	1.8	mg/L	J
MW-3	08/09/2007	GW	Total Dissolved Solids	620	mg/L	
MW-3	08/09/2007	GW	Trichlorofluoromethane	34	ug/L	
MW-3(Dup)	08/09/2007	GW	Trichlorofluoromethane	11	ug/L	
MW-3(Dup)	08/09/2007	GW	Mercury	1.3	ug/L	
MW-3	09/06/2007	GW	Trichlorofluoromethane	31	ug/L	
MW-3	09/06/2007	Air	Acetone	0.045	mg/m3	J
MW-3	09/06/2007	Air	Methylene Chloride	0.164	mg/m3	
MW-3	09/06/2007	Air	Toluene	0.007	mg/m3	J
MW-3	09/06/2007	Air	Trichlorofluoromethane	< 0.006	mg/m3	

Notes:

- 1. GW = Groundwater
- 2. mg/L = milligram per liter
- 3. ug/L = micrograms per liter
- 4. mg/m3 = milligram per cubic meter
- 5. < = less than
- 6. Dup = Duplicate Sample
- 7. J = The reported value is between the laboratory method detection limit and the laboratory method reporting limit.
- 8. \mathbf{B} = The analyte was detected in the associated method, field and or trip blanks.

Environmental Conservation Laboratories, Inc.

102-A Woodwinds Industrial Court Cary NC, 27511

Phone: 919.467.3090 FAX: 919.467.3515

Monday, September 10, 2007

Golder Associates, Inc. (GO007)

Attn: Rachel Kirkman

RECEIVED SE? 1 3 2007

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407

RE: Laboratory Results for

Project Number: 0739602407.200, Project Name/Desc: Material Recovery, LLC, LF

ENCO Workorder: C711259

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, August 10, 2007.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Stephanie Franz

Project Manager

Enclosure(s)

CASE NARRATIVE

Date:

10 September 2007

Client:

Golder Associates

Project #: Lab ID: Material Recovery C711259

Overview

This report is an amendment to the original report dated 29 August 2007 for this work order. This report was revised to include analyses not available when this report was originally generated.

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Quality Control Samples

The Method Blank for the Metals analysis showed contamination of Calcium and Iron. However, the Blank contamination is less than 10% of the analyte in question for the associated samples. This minimizes the impact on data quality.

The Method Blanks for the Nitrite, Ammonia and Nitrate/Nitrite (NOx) analyses all had slight contamination above the MDL but less than half of the MRL. Because of this, the impact on the data is negligible. The associated samples had detects of Nitrate/ Nitrite, but the detections are well over ten times the contamination in the Method Blank, minimizing the effect on the sample data.

Due to analyst error, the MS and MSD for the Chloride analysis were not spiked. Steps have been taken to prevent this in the future, and the Quality Assurance department has reviewed and approved all data for this analysis.

Quality Control Remarks

The Sulfide analysis was not performed within the EPA's recommended hold time due to laboratory oversight. The results are reported with the appropriate qualifier (Q-Flag).

Other Comments

All samples associated with this work order arrived in acceptable conditions. The samples were not checked for residual chlorine, as it is not required for ground water testing.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative.

Released By: Environmental Conservation Laboratories, Inc.

Stephanie Franz Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: 9231-MW-1	Lab ID: C711259-01	1 S	ampled: 08/09/0	7 13:20	Received: 08/10/07 10:15
Parameter	Hold Date/Time(s)	Prep Date	/Time(s)	Analysis	Date/Time(s)
EPA 160.1	08/16/07	08/13/07	07:45	8/15/2007	16:00
EPA 300.0	09/06/07	08/28/07	11:55	8/30/2007	' 11:37
EPA 310.2	08/23/07	08/15/07	09:10	8/15/2007	14:42
EPA 350.3	09/06/07	08/16/07	07:20	8/16/2007	' 13:5 4
EPA 353.2	08/11/07 13:20	08/10/07	22:50	8/11/2007	7 00:23
EPA 353.2	09/06/07	08/22/07	16:50	8/24/2007	13:52
EPA 353.2	09/06/07	08/30/07	17:10	8/30/2007	7 17:11
EPA 376.1	08/16/07	09/06/07	16:00	9/6/2007	16:50
EPA 6010B	02/05/08	08/13/07	10:02	8/15/2007	12:17
SM 4500 CO2/D	08/23/07	08/15/07	14:42	8/15/2007	' 14:42
SM4500-CI/E	09/06/07	08/14/07	10:54	8/14/2007	12:35

Client ID: 9231-M	W-3 Lab ID	: C711259-02 Sampled:	08/09/07 11:48 Received: 08/10/07 10:15
Parameter	Hold Date/Time(s)	Prep Date/Time(s	s) Analysis Date/Time(s)
EPA 160.1	08/16/07	08/13/07 07:45	8/15/2007 16:00
EPA 300.0	09/06/07	08/28/07 11:55	8/30/2007 11:55
EPA 310.2	08/23/07	08/15/07 09:10	8/15/2007 14:43
EPA 350.3	09/06/07	08/16/07 07:20	8/16/2007 13:54
EPA 353.2	08/11/07 11:48	08/10/07 22:50	8/11/2007 00:24
EPA 353.2	09/06/07	08/22/07 13:58	8/24/2007 14:03
EPA 353.2	09/06/07	08/30/07 17:10	8/30/2007 17:11
EPA 376.1	08/16/07	09/06/07 16:00	9/6/2007 16:50
EPA 6010B	02/05/08	08/13/07 10:02	8/15/2007 12:49
EPA 7470A	09/06/07	08/20/07 09:45	8/21/2007 15:03
EPA 8260B	08/23/07	08/15/07 11:29	8/15/2007 20:05
SM4500-CI/E	09/06/07	08/14/07 10:54	8/14/2007 12:37

Client ID: Field Blan	k Lab ID:	C711259-03 Sampled: 08/09	/07 13:45 Received: 08/10/07 10:15
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 7470A	09/06/07	08/20/07 09:45	8/21/2007 15:05
EPA 8260B	08/23/07	08/15/07 11:29	8/15/2007 19:38

Client ID: Trip Blan	k Lab ID:	: C711259-04 Sampled: 08/09/	07 00:00 Received: 08/10/07 10:15
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260B	08/23/07	08/15/07 11:29	8/15/2007 19:11

NORTH CAROLINA SWS SAMPLE DETECTION SUMMARY

lient ID: 9231-MW-1				Lab ID: (711259	-01			
Analyte	Result	s Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
Ammonia as N	0.035		1	0.030	0.10	NE	mg/L	EPA 350.3	
Calcium	236		1	7.0	100	NE	ug/L	EPA 6010B	
Chloride	24		1	2.0	5.0	NE	mg/L	SM4500-CI/E	
Iron	364		1	20	50	300	ug/L	EPA 6010B	
Magnesium	1290		1	20	100	NE	ug/L	EPA 6010B	
Nitrate as N	2.2	J	1	0.0066	0.10	10	mg/L	EPA 353.2	
Nitrate/Nitrite as N	2.2		1	0.0066	0.10	NE	mg/L	EPA 353.2	В
Potassium	4210		1	50	500	NE	ug/L	EPA 6010B	
Sodium	13200		1	200	500	NE	ug/L	EPA 6010B	
Sulfate	1.4	J	1	0.03	2.0	250	mg/L	EPA 300.0	
Total Dissolved Solids	82		1	10	10	NE	mg/L	EPA 160.1	

Client ID: 9231-MW-3				Lab ID: C	711259	02			
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
Ammonia as N	0.037		1	0.030	0.10	NE	mg/L	EPA 350.3	
Calcium	63200		1	7.0	100	NE	ug/L	EPA 6010B	
Chloride	39		1	2.0	5.0	NE	mg/L	SM4500-CI/E	
Iron	2920		1	20	50	300	ug/L	EPA 6010B	
Magnesium	20800		1	20	100	NE	ug/L	EPA 6010B	
Mercury	1.28		1	0.11	0.20	0.2	ug/L	EPA 7470A	
Nitrate as N	2.3	J	1	0.0066	0.10	10	mg/L	EPA 353.2	
Nitrate/Nitrite as N	2.3		1	0.0066	0.10	NE	mg/L	EPA 353.2	В
Nitrite as N	0.0064		1	0.0059	0.10	NE	mg/L	EPA 353.2	
Potassium	13000		1	50	500	NE	ug/L	EPA 6010B	
Sodium	28400		1	200	500	NE	ug/L	EPA 6010B	
Sulfate	1.8	J	1	0.03	2.0	250	mg/L	EPA 300.0	
Total Dissolved Solids	620		1	10	10	NE	mg/L	EPA 160.1	
Trichlorofluoromethane	34		1	0.16	1.0	1	ug/L	EPA 8260B	

ANALYTICAL RESULTS

Description: 9231-MW-1

Lab Sample ID: C711259-01

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 13:20

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Metals by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results Flag	<u>Units</u>	DF	MDL	MRL	NC SWSL	<u>Method</u>	Analyzed	Ву	<u>Notes</u>
Calcium [7440-70-2] *	236	ug/L	1	7.0	100	NE	EPA 6010B	08/15/07 12:17	JDH	
Iron [7439-89-6] *	364	ug/L	1	20	50	300	EPA 6010B	08/15/07 12:17	JDH	
Magnesium [7439-95-4] *	1290	ug/L	1	20	100	NE	EPA 6010B	08/15/07 12:17	JDH	
Potassium [7440-09-7] *	4210	ug/L	1	50	500	NE	EPA 6010B	08/15/07 12:17	JDH	
Sodium [7440-23-5] *	13200	ug/L	1	200	500	NE	EPA 6010B	08/15/07 12:17	JDH	

Lab Sample ID: C711259-01

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 13:20

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Classical Chemistry Parameters

Analyte [CAS Number] Ammonia as N [NA] *	Results 0.035	<u>Flag</u>	<u>Units</u> mg/L	<u>DF</u>	MDL 0.030	MRL 0.10	NC SWSL	Method EPA 350.3	Analyzed 08/16/07 13:54	<u>By</u> CKN	<u>Notes</u>
Bicarbonate (as CaCO3) [71-52-3]	5	U	mg/L	i	5	15	NE	SM 4500 CO2/D	08/15/07 14:42	ALT	
Carbonate (as CaCO3) [NA]	5	ប	mg/L	1	5	15	NE	SM 4500 CO2/D	08/15/07 14:42	ALT	
Chloride [16887-00-6] *	24		mg/L	1	2.0	5.0	NE	SM4500-CI/E	08/14/07 12:35	MJF	
Nitrate as N [14797-55-8] *	2.2	3	mg/L	1	0.0066	0.10	10	EPA 353.2	08/30/07 17:11	ALT	
Nitrate/Nitrite as N [NA] *	2.2		mg/L	1	0.0066	0.10	NE	EPA 353.2	08/24/07 13:52	MJF	В
Nitrite as N [14797-65-0] *	0.0059	U	mg/L	1	0.0059	0.10	NE	EPA 353.2	08/11/07 00:23	RWH	
Total Alkalinity [NA] *	5.2	U	mg/L	1	5.2	15	NE	EPA 310.2	08/15/07 14:42	MJF	
Total Dissolved Solids [NA] *	82		mg/L	1	10	10	NE	EPA 160.1	08/15/07 16:00	JOC	

Lab Sample ID: C711259-01

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 13:20

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Classical Chemistry Parameters

* - ENCO Orlando certified analyte [NC 424]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	Ву	<u>Notes</u>
Sulfate [14808-79-8] *	1.4	J	mg/L	1	0.03	2.0	250	EPA 300.0	08/30/07 11:37	RSA	
Sulfide [18496-25-8] *	0.45	· U	mg/L	1	0.45	1.0	1	EPA 376.1	09/06/07 16:50	AH	Q

Lab Sample ID: C711259-02

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 11:48

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Volatile Organic Compounds by GCMS

Analyte [CAS Number] Trichlorofluoromethane [75-69-4] *	Results 34	<u>Flag</u>	<u>Units</u> ug/L	<u>DF</u> 1		<u>RL</u> .0	NC SWSL	Method EPA 8260B	Analyzed 08/15/07 20:05	By jkg	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Lin	nits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	45	1	50.0	89 %	53-138		7H15014	EPA 8260B	08/15/07 20:05	jkg	1.0.
Dibromofluoromethane	<i>50</i>	1	50.0	100 %	<i>65-110</i>		7H15014	EPA 8260B	08/15/07 20:05	jkg	
Toluene-d8	50	1	50.0	99 %	72-114		7H15014	EPA 8260B	08/15/07 20:05	jkg	

Lab Sample ID: C711259-02

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 11:48

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Metals by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results Flag	<u>Units</u>	DF	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	Ву	<u>Notes</u>
Calcium [7440-70-2] *	63200	ug/L	1	7.0	100	NE	EPA 6010B	08/15/07 12:49)DH	
Iron [7439-89-6] *	2920	ug/L	1	20	50	300	EPA 6010B	08/15/07 12:49	JDH	
Magnesium [7439-95-4] *	20800	ug/L	1	20	100	NE	EPA 6010B	08/15/07 12:49	JDH	
Mercury [7439-97-6] *	1.28	ug/L	1	0.11	0.20	0.2	EPA 7470A	08/21/07 15:03	JDH	
Potassium [7440-09-7] *	13000	ug/L	1	50	500	NE	EPA 6010B	08/15/07 12:49	JDH	
Sodium [7440-23-5] *	28400	ug/L	1	200	500	NE	EPA 6010B	08/15/07 12:49	JDH	

Lab Sample ID: C711259-02

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 11:48

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Classical Chemistry Parameters

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	Method	Analyzed	By	Notes
Ammonia as N [NA] *	0.037		mg/L	1	0.030	0.10	NE	EPA 350.3	08/16/07 13:54	CKN	
Chloride [16887-00-6] *	39		mg/L	1	2.0	5.0	NE	SM4500-CI/E	08/14/07 12:37	MJF	
Nitrate as N [14797-55-8] *	2.3	J	mg/L	1	0.0066	0.10	10	EPA 353.2	08/30/07 17:11	ALT	
Nitrate/Nitrite as N [NA] *	2.3		mg/L	1	0.0066	0.10	NE	EPA 353.2	08/24/07 14:03	MJF	В
Nitrite as N [14797-65-0] *	0.0064		mg/L	1	0.0059	0.10	NE	EPA 353.2	08/11/07 00:24	RWH	
Total Alkalinity [NA] *	5.2	U	mg/L	1	5.2	15	. NE	EPA 310.2	08/15/07 14:43	MJF	
Total Dissolved Solids [NA] *	620		mg/L	1	10	10	NE	EPA 160.1	08/15/07 16:00	JOC	

Description: 9231-MW-3

Lab Sample ID: C711259-02

Received: 08/10/07 10:15

Matrix: Water

Sampled: 08/09/07 11:48

Work Order: C711259

Project: Material Recovery, LLC, LF

Sampled By: Ben Draper

Classical Chemistry Parameters

* - ENCO Orlando certified analyte [NC 424]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	MRL	NC SWSL	<u>Method</u>	Analyzed	Ву	Notes
Sulfate [14808-79-8] *	1.8	J	mg/L	1	0.03	2.0	250	EPA 300.0	08/30/07 11:55	RSA	
Sulfide [18496-25-8] *	0.45	U -	mg/L	1	0.45	1.0	1	EPA 376.1	09/06/07 16:50	AH	Q

Volatile Organic Compounds by GCMS - Quality Control

Batch 7H15014 - EPA 5030B_MS

Blank (7H15014-BLK1)

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 13:12

Analyte	Result	Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chloromethane	0.18	U	1.0	ug/L							
Vinyl chloride	0.15	U	1.0	ug/L							
Bromomethane	0.21	U	1.0	ug/L							
Chloroethane	0.40	U	1.0	ug/L							
Trichlorofluoromethane	0.16	U	1.0	ug/L							
1,1-Dichloroethene	0.14	U	1.0	ug/L							
Acetone	0.90	U	5.0	ug/L							
Iodomethane	0.23	U	2.0	ug/L							
Carbon disulfide	0.12	U	5.0	ug/L							
Methylene chloride	0.088	U	1.0	ug/L							
Acrylonitrile	2.0	U	5.0	ug/L							
trans-1,2-Dichloroethene	0.10	U	1.0	ug/L							
1,1-Dichloroethane	0.090	U	1.0	ug/L							
Vinyl acetate	0.19	U	2.0	ug/L							
2-Butanone	0.56	U.	5.0	ug/L							
cis-1,2-Dichloroethene	0.14	· U	1.0	ug/L							
Bromochloromethane	0.19	U	1.0	ug/L							
Chloroform	0.16	U	1.0	ug/L							
1,1,1-Trichloroethane	0.24	υ	1.0	ug/L							
Carbon tetrachioride	0.38	U	1.0	ug/L							
1,2-Dichloroethane	0.36	U	1.0	ug/L							
Benzene	0.12	υ	1.0	ug/L							
Trichloroethene	0.23	U	1.0	ug/L							
1,2-Dichloropropane	0.18	U	1.0	ug/L							
Dibromomethane	0.14	U	1.0	ug/L ·							
Bromodichloromethane	0.19	υ	0.40	ug/L							
cis-1,3-Dichloropropene	0.16	U	0.20	ug/L							
4-Methyl-2-pentanone	0.36	U	5.0	ug/L							
Toluene	0.15	U	1.0	ug/L							
trans-1,3-Dichloropropene	0.18	U	0.20	ug/L							
1,1,2-Trichloroethane	0.24	U	1.0	ug/L							
Tetrachloroethene	0.25	U	1.0	ug/L							
2-Hexanone	0.24	U	5.0	ug/L							
Dibromochloromethane	0.18	U	1.0	ug/L							
1,2-Dibromoethane	0.19	U	1.0	ug/L							
Chlorobenzene	0.16	U	1.0	ug/L							
1,1,1,2-Tetrachloroethane	0.16	U	1.0	ug/L							
Ethylbenzene	0.17	U	1.0	ug/L							
Styrene	0.12	U	1.0	ug/L							
Bromoform	0.36	U	1.0	ug/L							
1,1,2,2-Tetrachloroethane	0.27	U	1.0	ug/L							
1,2,3-Trichloropropane	0.32	U	1.0	ug/L							
trans-1,4-Dichloro-2-butene	0.60	U	1.0	ug/L							
1,4-Dichlorobenzene	0.15	บ	1.0	ug/L							
1,2-Dichlorobenzene	0.17	U	1.0	ug/L							
1,2-Dibromo-3-chloropropane	0.19	Ų,	1.0	ug/L							
Surrogate: Dibromofluoromethane	51			ug/L	50.0		102	65-110			
Surrogate: Toluene-d8	51			ug/L	50.0		102	<i>72-114</i>			

Volatile Organic Compounds by GCMS - Quality Control

Batch 7H15014 - EPA 5030B_MS

Blank (7H15014-BLK1) Continued

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 13:12

Analyte	Result Flag	MRL Units	Spike Level	Source Result %REC	%REC Limits	RPD Limit Notes
Surrogate: 4-Bromofluorobenzene	43	ug/L	50.0	87	<i>53-138</i>	

Blank (7H15014-BLK2)

Prepared: 08/15/2007 11:29 Analyzed: 08/16/2007 00:32

Blank (7H15U14-BLK2)					Spike Source %REC RPD								
Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes								
Chloromethane	0.18	U	1.0	ug/L									
Vinyl chloride	0.15	U	1.0	ug/L									
Bromomethane	0.21	U	1.0	ug/L									
Chloroethane	0.40	U	1.0	ug/L									
Trichlorofluoromethane	0.16	ប	1.0	ug/L									
1,1-Dichloroethene	0.14	U	1.0	ug/L									
Acetone	0.90	U	5.0	ug/L									
Iodomethane	0.23	U	2.0	ug/L									
Carbon disulfide	0.12	U	5.0	ug/L									
Methylene chloride	0.088	U	1.0	ug/L									
Acrylonitrile	2.0	U	5.0	ug/L									
trans-1,2-Dichloroethene	0.10	U	1.0	ug/L									
1,1-Dichloroethane	0.090	U	1.0	ug/L									
Vinyl acetate	0.19	U	2.0	ug/L									
2-Butanone	0.56	Ų	5.0	ug/L									
cis-1,2-Dichloroethene	0.14	U	1.0	ug/L									
Bromochloromethane	0.19	U	1.0	ug/L									
Chloroform	0.16	U	1.0	ug/L									
1,1,1-Trichloroethane	0.24	U	1.0	ug/L									
Carbon tetrachloride	0.38	U	1.0	ug/L									
1,2-Dichloroethane	0.36	U	1.0	ug/L									
Benzene	0.12	U	1.0	ug/L									
Trichloroethene	0.23	U	1.0	ug/L									
1,2-Dichloropropane	0.18	U	1.0	ug/L									
Dibromomethane	0.14	υ	1.0	ug/L									
Bromodichloromethane	0.19	U	0.40	ug/L									
cis-1,3-Dichloropropene	0.16	บ	0.20	ug/L									
4-Methyl-2-pentanone	0.36	U	5.0	ug/L									
Toluene	0.15	U	1.0	ug/L									
trans-1,3-Dichloropropene	0.18	U	0.20	ug/L									
1,1,2-Trichloroethane	0.24	U	1.0	ug/L									
Tetrachloroethene	0.25	U	1.0	ug/L									
2-Hexanone	0.24	U	5.0	ug/L									
Dibromochloromethane	0.18	ប	1.0	ug/L									
1,2-Dibromoethane	0.19	U	1.0	ug/L									
Chlorobenzene	0.16	U	1.0	ug/L									
1,1,1,2-Tetrachloroethane	0.16	U	1.0	ug/L									
Ethylbenzene	0.17	U	1.0	ug/L									
Styrene	0.12	U	1.0	ug/L									
Bromoform	0.36	U	1.0	ug/L									
1,1,2,2-Tetrachloroethane	0.27	U	1.0	ug/L									
1,2,3-Trichloropropane	0.32	U	1.0	ug/L									
trans-1,4-Dichloro-2-butene	0.60	U	1.0	ug/L									

Volatile Organic Compounds by GCMS - Quality Control

Batch 7H15014 - EPA 5030B_MS

Blank (7H15014-BLK2) Continued

Prepared: 08/15/2007 11:29 Analyzed: 08/16/2007 00:32

Analyte	Result	Flag	MRL	Units	Spike Level	Source Result 9	%REC	%REC Limits	RPD	RPD Limit	Notes
1,4-Dichiorobenzene	0.15	U	1.0	ug/L							
1,2-Dichlorobenzene	0.17	U	1.0	ug/L							
1,2-Dibromo-3-chloropropane	0.19	U-	1.0	ug/L							
Surrogate: Dibromofluoromethane	50			ug/L	50.0		101	65-110			
Surrogate: Toluene-d8	51			ug/L	50.0		103	72-114			
Surrogate: 4-Bromofluorobenzene	45			ug/L	50.0		90	<i>53-138</i>			

LCS (7H15014-BS1)

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 13:39

Analyte	Result Flag	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD RPD Limit Notes
1,1-Dichloroethene	14	1.0	ug/L	20.0	71	43-131	
Benzene	22	1.0	ug/L	20.0	109	73-127	
Trichloroethene	22	1.0	ug/L	20.0	109	76-128	
Toluene	19	1.0	ug/L	20.0	93	71-112	
Chlorobenzene	20	1.0	ug/L	20.0	99	75-114	

LCS (7H15014-BS2)

Prepared: 08/15/2007 11:29 Analyzed: 08/16/2007 00:59

Analyte	Result F	ag MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD RPD Limit Notes
1,1-Dichloroethene	15	1.0	ug/L	20.0	76	43-131	
Benzene	22	1.0	ug/L	20.0	110	73-127	
Trichloroethene	23	1.0	ug/L	20.0	113	76-128	
Toluene	20	1.0	ug/L	20.0	98	71-112	
Chlorobenzene	21	1.0	ug/L	20.0	104	75-114	

Matrix Spike (7H15014-MS1)

Source: C711861-09

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 14:05

Analyte	Result	Flag MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Notes
1,1-Dichloroethene	15	1.0	ug/L	20.0	0.14 U	77	43-131	
Benzene	22	1.0	ug/L	20.0	0.12 U	110	73-127	
Trichloroethene	22	1.0	ug/L	20.0	0.23 U	111	76-128	
Toluene	20	1.0	ug/L	20.0	0.15 U	98	71-112	
Chlorobenzene	21	1.0	ug/L	20.0	0.16 U	103	75-114	

Matrix Spike (7H15014-MS2)

Source: C711861-08

Prepared: 08/15/2007 11:29 Analyzed: 08/16/2007 01:25

	10.00		•	Spike Source	A/ BEG		RPD Limit Notes
Analyte	Result Flag	MRL	Units	Level Result	%REC		LIMIT MUTES
1,1-Dichloroethene	15	1.0	ug/L	20.0	76	43-131	
Benzene	24	1.0	ug/L	20.0	121	73-127	
Trichloroethene	23	1.0	ug/L	20.0	114	76-128	
Toluene	20	1.0	ug/L	20.0	99	71-112	
Chlorobenzene	21	1.0	ug/L	20.0	106	75-114	

Matrix Spike Dup (7H15014-MSD1)

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 14:33

Volatile Organic Compounds by GCMS - Quality Control

Batch 7H15014 - EPA 5030B_MS

Matrix Spike Dup (7H15014-MSD1) Continued

Source: C711861-09

Prepared: 08/15/2007 11:29 Analyzed: 08/15/2007 14:33

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit Not	tes
1,1-Dichloroethene	15	1.0	ug/L	20.0	0.14 U	75	43-131	3	16	
Benzene	23	1.0	ug/L	20.0	0.12 U	115	73-127	4	18	
Trichloroethene	22	1.0	ug/L	20.0	0.23 U	110	76-128	0.7	.17	
Toluene	18	1.0	ug/L	20.0	0.15 U	89	71-112	10	23	
Chlorobenzene	19	1.0	ug/L	20.0	0.16 U	93	75-114	10	17	

Matrix Spike Dup (7H15014-MSD2)

Source: C711861-08

Prepared: 08/15/2007 11:29 Analyzed: 08/16/2007 01:52

3041001 07 11001 00								
100	Result Flag	MRL	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit Notes
1,1-Dichloroethene	16	1.0	ug/L	20.0	78	43-131	3	16
Benzene	22	1.0	ug/L	20.0	111	73-127	8	18
Trichloroethene	22	1.0	ug/L	20.0	109	76-128	4	17
Toluene	20	1.0	ug/L	20.0	100	71-112	1	23
Chlorobenzene	21	1.0	ug/L	20.0	104	75-114	1	17

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 7H13009 - EPA 3005A

Blank (7H13009-BLK1)

Prepared: 08/13/2007 10:02 Analyzed: 08/15/2007 11:59

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit	Notes
Calcium	16.1	J	100	ug/L		QB-01
Iron	23	3	50	ug/L		QB-01
Magnesium	20	U	100	ug/L		

LCS (7H13009-BS1)

Prepared: 08/13/2007 10:02 Analyzed: 08/16/2007 10:47

Analyte	Result Fla	g MRL	Units		iource Result %REC	%REC Limits RI	RPD PD Limit Notes
Calcium	5.3	0.1	mg/L	5.00	107	81-111	
Iron	5	0.05	mg/L	5.00	108	84-133	
Magnesium	6	0.1	mg/L	5.00	113	81-117	
Potassium	25	0.5	mg/L	25.0	102	84-112	
Sodium	26	0.5	mg/L	25.0	103	81-120	

Matrix Spike (7H13009-MS1)

Source: C711259-01

Prepared: 08/13/2007 10:02 Analyzed: 08/15/2007 12:24

504:00: 0. 11155 0-								
Analyte	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC Limits F	RPD RPD Limit Notes
Calcium	5.8	0.1	mg/L	5.00	0.2	111	63-131	
Iron	6	0.05	mg/L	5.00	0.4	112	48-144	
Magnesium	7	0.1	mg/L	5.00	1	117	59-129	
Potassium	33	0.5	mg/L	25.0	4	114	53-121	
Sodium	42	0.5	mg/L	25.0	13	115	29-171	

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 7H13009 - EPA 3005A

Matrix Spike Dup (7H13009-MSD1)

Source: C711259-01

Prepared: 08/13/2007 10:02 Analyzed: 08/15/2007 12:31

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit Notes
Calcium	5.5	0.1	mg/L	5.00	0.2	105	63-131	5	22
Iron	6	0.05	mg/L	5.00	0.4	107	48-144	4	23
Magnesium	7	0.1	mg/L	5.00	1	113	59-129	3	22
Potassium	31	0.5	mg/L	25.0	4	108	53-121	4	20
Sodium	41	0.5	mg/L	25.0	13	111	29-171	2	21

Batch 7H20007 - EPA 7470A

Blank (7H20007-BLK1)

Prepared: 08/20/2007 09:45 Analyzed: 08/21/2007 14:14

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Limit Notes
Mercury	0.11	U	0.20	ug/L	

LCS (7H20007-BS1)

Prepared: 08/20/2007 09:45 Analyzed: 08/21/2007 14:16

Analyte	Result Flag	MRL	Units	Spike Level	Source %REC RPD Limit Notes
Mercury	5.53	0.20	ug/L	5.00	111 87-123

Matrix Spike (7H20007-MS1)

Source: C711545-02

Prepared: 08/20/2007 09:45 Analyzed: 08/21/2007 14:21

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD - Notes
Mercury	5.95	0.20	ug/L	5.00	0.11 U	119	63-132	•

Matrix Spike Dup (7H20007-MSD1)

Source: C711545-02

Prepared: 08/20/2007 09:45 Analyzed: 08/21/2007 14:24

Analyte	Result Fla	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Mercury	5.65	0.20	ug/L	5.00	0.11 Ù	113	63-132	5	10	

Post Spike (7H20007-PS1)

Source: C711545-02

Prepared: 08/20/2007 09:45 Analyzed: 08/21/2007 14:27

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Notes
Mercury	4.99	0.20	ug/L	5.00	0.09	98	85-115	

Classical Chemistry Parameters - Quality Control

Batch 7H10033 - NO PREP

Blank (7H10033-BLK1)

Prepared: 08/10/2007 22:50 Analyzed: 08/11/2007 00:21

Analyte	Result	Flag	MRL	Units	Spike Source Level Result %RE	%REC C Limits RPI	RP Lin	υ	lotes
Nitrite as N	0.014	J	0.10	mg/L					

LCS (7H10033-BS1)

Prepared: 08/10/2007 22:50 Analyzed: 08/11/2007 00:22

Classical Chemistry Parameters - Quality Control

Batch 7H10033 - NO PREP

LCS (7H10033-BS1) Continued

Prepared: 08/10/2007 22:50 Analyzed: 08/11/2007 00:22

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD Limit Notes
Nitrite as N	0.74	0.10	mg/L	0.750	99	80-120	

Matrix Spike (7H10033-MS1)

Prepared: 08/10/2007 22:50 Analyzed: 08/11/2007 00:51

Source: C711259-02

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Notes
Nitrite as N	0.78	0.10	mg/L	0.750	0.0064	103	80-120	

Matrix Spike Dup (7H10033-MSD1)

Prepared: 08/10/2007 22:50 Analyzed: 08/11/2007 00:52

Source: C711259-02

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Nitrite as N	0.76	0.10	mg/L	0.750	0.0064	101	80-120	2	25	

Batch 7H13005 - NO PREP

Blank (7H13005-BLK1)

Prepared: 08/13/2007 07:45 Analyzed: 08/15/2007 16:00

Analyte	Result	Flag	MRL	Units	Spik Leve	e Source Result	%REC Limits	RPD RPD Limit Notes	
Total Dissolved Solids	10	U	10	mg/L					

LCS (7H13005-BS1)

Prepared: 08/13/2007 07:45 Analyzed: 08/15/2007 16:00

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD Limit Notes
Total Dissolved Solids	310	10	mg/L	300	103	90-110	. •

Duplicate (7H13005-DUP1)

Prepared: 08/13/2007 07:45 Analyzed: 08/15/2007 16:00

Source: C710700-01

Analyte	Result Fla	ag MRL	Units	Spike Source Level Result %REC	%REC Limits RPD	RPD Limit	Notes
Total Dissolved Solids	150	10	mg/L	160	8	10	

Batch 7H14007 - NO PREP

Blank (7H14007-BLK1) Prepared: 08/14/2007 10:54 Analyzed: 08/14/2007 12:30

Analyte	Res	ult Flag	MRL	Units	Spike Source %REC Limit	
Chloride	2.0	Ų	5.0	mg/L		

LCS (7H14007-BS1)

Prepared: 08/14/2007 10:54 Analyzed: 08/14/2007 12:31

Analyte	Result Flag	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD Umit Notes
Chloride	50	5.0	mg/L	50.0	99	80-120	

Matrix Spike (7H14007-MS1) Source: C711882-02 Prepared: 08/14/2007 10:54 Analyzed: 08/14/2007 12:40

Classical Chemistry Parameters - Quality Control

Batch 7H14007 - NO PREP

Matrix Spike (7H14007-MS1) Continued

Source: C711882-02

Prepared: 08/14/2007 10:54 Analyzed: 08/14/2007 12:40

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Notes
Chloride	65	5.0	mg/L	625	71	NR	80-120	

Matrix Spike Dup (7H14007-MSD1)

Source: C711882-02

Prepared: 08/14/2007 10:54 Analyzed: 08/14/2007 12:40

Ańalyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chloride	68	5.0	mg/L	625	71	NR	80-120	4	25	

Batch 7H15007 - NO PREP

Blank (7H15007-BLK1)

Prepared: 08/15/2007 09:10 Analyzed: 08/15/2007 14:20

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes
Total Alkalinity	5.2	Ü	15	mg/L	

LCS (7H15007-BS1)

Prepared: 08/15/2007 09:10 Analyzed: 08/15/2007 14:21

								CONTRACTOR OF THE PARTY OF THE
				Snike	Source	%REC	RPD	
	Result Flac	a MRL	Units	Level	Source Result %REC	Limits	RPD Limit Not	es
Analyte	Result Flag	MIKL				00.400		
Total Alkalinity	100	- 15	mg/L	100	101	80-120		

Matrix Spike (7H15007-MS1)

Source: C710700-01

Prepared: 08/15/2007 09:10 Analyzed: 08/15/2007 14:24

Analyte J	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Limit Notes
Total Alkalinity	140	15	mg/L	97.3	96	47	80-120	QM-07

Matrix Spike Dup (7H15007-MSD1)

Source: C710700-01

Prepared: 08/15/2007 09:10 Analyzed: 08/15/2007 14:25	Dranarad:	08/15/2007	09:10 Analyzed:	08/15/2007 14:25
---	-----------	------------	-----------------	------------------

	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte Total Alkalinity	140	15	mg/L	97.3	96	41	80-120	4	25	QM-07

Batch 7H16002 - NO PREP

Blank (7H16002-BLK1)

Prepared: 08/16/2007 07:20 Analyzed: 08/16/2007 13:54

Analyte	Result	Flag	MRL	Units	spike Source %REC RPD evel Result %REC Limits RPD Limit Note	S
Aligiye	1703616	Sales in the sales				
Ammonia as N	0.047	3	0.10	mg/L		

LCS (7H16002-BS1)

Prepared: 08/16/2007 07:20 Analyzed: 08/16/2007 13:54

Analyte	Result Flag	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD RPD Notes
Ammonia as N	48	0.10	mg/L	50.0	97	80-120	

Matrix Spike (7H16002-MS1)

Prepared: 08/16/2007 07:20 Analyzed: 08/16/2007 13:54

Classical Chemistry Parameters - Quality Control

Batch 7H16002 - NO PREP

Matrix Spike (7H16002-MS1) Continued

Prepared: 08/16/2007 07:20 Analyzed: 08/16/2007 13:54

Source: C709157-01

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit Notes
Ammonia as N	44	0.10	mg/L	50.0	0.12	87	80-120	

Matrix Spike Dup (7H16002-MSD1)

Source: C709157-01

Prepared: 08/16/2007 07:20 Analyzed: 08/16/2007 13:54

Analyte	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Ammonia as N	43	0.10	mg/L	50.0	0.12	86	80-120	1	25	

Batch 7H22025 - NO PREP

Blank (7H22025-BLK1)

Prepared: 08/22/2007 13:58 Analyzed: 08/22/2007 20:32

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes
Nitrate/Nitrite as N	0.020	J	0.10	mg/L	

LCS (7H22025-BS1)

Prepared: 08/22/2007 13:58 Analyzed: 08/22/2007 20:34

Analyte	Result. Fla	ia MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD Lin	D iit Notes
Nitrate/Nitrite as N	1.3	0.10	mg/L	1.25	102	80-120		

Matrix Spike (7H22025-MS1)

Prepared: 08/22/2007 13:58 Analyzed: 08/22/2007 21:20

Source: C712264-03

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit Notes
Nitrate/Nitrite as N	5.1	0.10	mg/L	1.25	3.6	118	80-120	

Matrix Spike Dup (7H22025-MSD1)

Prepared: 08/22/2007 13:58 Analyzed: 08/22/2007 21:21

Source: C712264-03

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Nitrate/Nitrite as N	4.9	0.10	mg/L	1.25	3.6	106	80-120	3	25	

Batch 7H22027 - NO PREP

Blank (7H22027-BLK1)

Prepared: 08/22/2007 16:50 Analyzed: 08/22/2007 23:41

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes
Nitrate/Nitrite as N	0.0066	U	0.10	mg/L	

LCS (7H22027-BS1)

Prepared: 08/22/2007 16:50 Analyzed: 08/22/2007 23:43

Analyte	Result Flag	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD RPD Limit Notes
Nitrate/Nitrite as N	1.2	0.10	mg/L	1.25	94	80-120	

Matrix Spike (7H22027-MS1)

Prepared: 08/22/2007 16:50 Analyzed: 08/23/2007 00:24

25

QM-02

QUALITY CONTROL

Classical Chemistry Parameters - Quality Control

Batch 7H22027 - NO PREP

Matrix Spike (7H22027-MS1) Continued

Source: C712270-02

Prepared: 08/22/2007 16:50 Analyzed: 08/23/2007 00:24

Prepared: 08/22/2007 16:50 Analyzed: 08/23/2007 00:26

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Notes
Nitrate/Nitrite as N	4.4	0.10	mg/L	1.25	3.5	72	80-120	QM-02

Matrix Spike Dup (7H22027-MSD1)

Source: C712270-02

- · · · · · · · · · · · · · · · · · · ·	overe opn	
Spike Source %REC RPD	olke Source Voket Rrb	Notos

80-120

QUALITY CONTROL

1.25

mg/L

Classical Chemistry Parameters - Quality Control

Result Flag

Batch 7H28005 - NA

Nitrate/Nitrite as N

Blank (7H28005-BLK1)

Prepared: 08/28/2007 11:55 Analyzed: 08/30/2007 03:55

Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes
Sulfate	0.03	U	2.0	mg/L	

LCS (7H28005-BS1)

Prepared: 08/28/2007 11:55 Analyzed: 08/30/2007 04:13

,					
Analyte	Result Fla	g MRL	Units	Spike Level	Source %REC RPD Result %REC Limits RPD Limit Notes
Sulfate	250	2.0	mg/L	250	100 90-115
Sunde	ن د د د	2.0	9/ -		

Matrix Spike (7H28005-MS1)

Source: A704726-05

Prepared: 08/28/2007 11:55 Analyzed: 08/30/2007 04:31

<u>Anályte</u>	Result Fla	g MRL	Units	Spike Level	Source Result	%REC	%REC RI Limits RPD Lin	D nit Notes
Sulfate	250	2.0	mg/L	255	2.9	96	90-115	

Matrix Spike Dup (7H28005-MSD1)

Prepared: 08/28/2007 11:55 Analyzed: 08/30/2007 04:49

Source: A704726-05

Analyte	Result Fla	a MRL	Units	Spike Level	Source Result	%REC	WREC Limits	RPD	RPD Limit	Notes
Suifate	250	2.0	mg/L	255	2.9	96	90-115	0.5	10	

Batch 7I06022 - NO PREP

Blank (7I06022-BLK1)

Prepared: 09/06/2007 16:00 Analyzed: 09/06/2007 16:04

Diamit (> =====,					
Analyte	Result	Flag	MRL	Units	Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes
Sulfide	0.45	U	1.0	mg/L	

LCS (7106022-BS1)

Prepared: 09/06/2007 16:00 Analyzed: 09/06/2007 16:04

Analyte	Result Flag	MRL	Units	Spike Level	Source %REC Result %REC Limits RI	RPD D Limit Notes
Sulfide	4.0	1.0	mg/L	4.01	101 84-106	

Classical Chemistry Parameters - Quality Control

Batch 7I06022 - NO PREP

Matrix Spike (7I06022-MS1)

Source: A705038-03

Prepared: 09/06/2007 16:00 Analyzed: 09/06/2007 16:50

Boardor An Obtober 15									4
				Snika	Source		%REC	RPD	1
				Spike Level		%REC		RPD Limit Notes	4
Analyte	Result Flag	MRL	Units	Level	Result	YOKEL	riiiiira i	A 2111115 110480	2
		4.0		4.01	0.45 U	0.3	84-106		
Sulfide	3.7	1.0	mg/L	4.01	U.75 U	93	0.100		

Matrix Spike Dup (7I06022-MSD1)

Source: A705038-03

Prepared: 09/06/2007 16:00 Analyzed: 09/06/2007 16:50

Analyte	Result Flac	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Sulfide	3.6	1.0	mg/L	4.01	0.45 U	91	84-106	2	10	

FLAGS/NOTES AND DEFINITIONS

В	The analyte was detected in the associated method blank.
D	The sample was analyzed at dilution.
J	The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable
U	The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
MRL	Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
Q QB-01	Analysis performed outside of method - specified holding time. The method blank had a positive result for the analyte; however, the concentration in the method blank is less than 10% of the sample result, which is allowable under NELAC guidelines.
QM-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Color Paccides, III. (Cour.)	ADV.ZO	0739609A07 200	٤			lŀ		Required	Anatyses	F			Requested Tuntstraint
Wess The Wingste Building 4900 Koder Bird., Safe 140	Ě	Material Recovery, LLC				18 ES		8	566	2//	-,,,		Note Restments subject to acceptant by the forder
	18	ş	i :		A4	CNSCA		COS\0 0 CCS\2	eΝ,و۱		2-009	2.68	7 Standard
(336) 852-4903 (336) 852-4904	Rache	Rachel Kirkman	s		uədd		1 SCL	009# M 09# MS		A,QM,	LING.	e ale	Expedited
R. Den strange	Accol	Accounts Payable	appe			ore (18	A B T E &	3 elecc AS elec	-) e)t	Due//_
restricted Superiors	Furthy # (4 Impersor)	- - - - -				Alkalir	nanos	duesilă cdieO	111111		БН		CZ711259
1	Coloriton		Materia	(D#P40)	l	•			å -				0021110
(Fedibethlaba) Cole.to.	The 72	\$ \ \ \ \ \	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		3	1	1,		+,	1	3	Sample Comments Albathala (Fears Care) Co
TOTAL OF THE STATE	4	ષ્ટ્ર	Water	. \$		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-		 	1 *			No. of the Late of
	4	১ ৬	Water		H	╁	+				×	1	Transle Persons
	ļ	U	Water		 *								NY Ac. T. Wes
				40 m						H			!
									r		-		
					H						_		
					F				-				
					\Box								
						+		1					
					T	+	4						
	1				- 출	C-Total # of Continents	4		1	4	4		
Sample to Proposed By S/3/07			M	١	s v	100 to 10	7	Ĺ					DateSam
1. Please Previde "Level 2" Data R.	N Ž				4	i i		B I second					L Z Z
Agreement for Lagrenton	I∦ 				6	e la		33	-3	E	إ	1	STOT WORK
2007 Enco Print Cel. 1	Ē.		- Z	0							Ĺ		rai tatie Unaccedable

(407) 826-5314 Fax (407) 850-6945 10775 Central Port Dr. Orlando, FL 32824

ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD

4810 Executive Park Court, Suite 211 (904) 296-3007 Fax (904) 296-6210 Jacksonville, FL 32216-6069

1015 Passport Way Cary, NC 27513

(919) 677-1669 Fax (919) 677-9846

Page

322242K Then levelbooks the Alkelmdy (bie 1 ag , Cuen) Ch TOS, SO4 , S, Withole, Widork Same of Treplosifications Requested Turnaround Note: Rush requests subject to C711259 Sample Comments acceptance by the facility Expedited Standard NC App. I VOCS Times 84/10/01/B ab Workorder Date/Time * Mercury Due_ Acceptable Nitrate Calc 353.2 βН Preservation: Lice H-HCI N-HNO3 S-H2SO4 NO-NaOH O-Other Chloride SM4500-CI/E Ca,Fe,K,Mg,Na × Ca,Fe,Hg,K,Mg,Na 全のう Carbonate SM 4500 CO2/D Bicarbonate SM 4500 CO2/D, S.EEE XON, E.OEE BINOMMA Fotal # of Containers Alkalinity 310.2, Vitrite as N 353.2, Sulfate 375.4, TDS 160.1 8-5-2007 bebnetx3 808S8 1 xibneqqA 80828 Containers 25 th Total # of 4 2 Q Material Recovery, LLC (see codes) Wafer Water Water Water **Accounts Payable** 0739602407.200 coler #s & Temps on Receit Rachel Kirkman Comp / Grab \boldsymbol{b} ৬ 18-26 acility # (if required O # / Billing Info 13:45 Collection Time アンプル 13:20 Astes April 9, 2004+ Provide "Level2" Data Report 18/3/07 2. Und Rates pea "Basic Orderang 8-4-2001 1002-6-B 8-4-2001 Collection Date The Wingate Building 4900 Koger Blvd., Suite 140 (336) 852-4904 Golder Associates, Inc. (GO017) Greensboro, NC 27407 Sample ID (Field Identification) (336) 852-4903 Agreement of Sources " A Name, Affiliation (Print) R. Denpen 2. Estimated 9231-MW-1 9231-MW-3 sample Kit Prepared By Field Blank Trip Blank pler(s) Signature

Matrix: GW. Groundwater SO. Soil SE-Sediment SW. Surface Water WW-Wastewater A-Air O-Other (detail in comments)

Note : All samples submitted to ENCO Labs are in accordance with the terms and conditions listed on the reverse of this form, unless prior written agreements exist I Secondary Secondary

WORK ORDER

Printed: 9/10/2007 1:45:04PM

C711259

ENCO Cary

Sample Receipt Conditions

Client: Golder Associates, Inc. (GO007)
Project: Material Recovery, LLC, LF

PO #:

Lab Project Mgr: Project Number:

Stephanie Franz

er: 0739602407.200

Report To:

Golder Associates, Inc. (GO007)

Rachel Kirkman

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407 Phone: (336) 852-4903

Fax: (336) 852-4904

Invoice To:

Golder Associates, Inc. (GO007)

Accounts Payable

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407 Phone :(804) 358-7900 Fax: 804-358-2900

Received By: Logged In By:

John W. Lowther Derek Williams Date Received:

10-Aug-07 10:15

Date Logged In:

10-Aug-07 13:47

Work Order Comments:

Default Cooler received at 0.9°C

Containers Intact
Y
Containers Properly Preserved
Y
Proper Containers Received
Y
All Samples in PreLog Received
Y
CocC/Labels Agree
Y
Custody Seals Intact
Y
Volatile Containers Preserved
Y
Volatile Containers Headspace Free
Y
Aqueous Samples Checked for Residual Cl
N
Received On Ice
Y

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 1 of 5

Project Name: Material Recovery, LLC Landfill

Project Reference Number: 0739602407.100

Sampling Event Date: 8/9/07

Review Date: 9-14-07

Review Date: 10-2-07

Report #: C711259

Initials: KYH

Initials: JAD

Person(s) performing the review are to initial each item on this form as acknowledgement of data acceptance, or as acknowledgement of a review issue. In the case of the latter, a brief explanation should follow the applicable item.

Golder Associates Inc. has reviewed the laboratory certificates of analysis, chain-of-custody form, and laboratory provided sample group quality assurance and quality control data for the above referenced sample group to identify potential bias or inaccuracy, in general accordance with the following United States Environmental Protection Agency documents:

- Region III Modifications to Functional Guidelines for Organic Data Review Multi-Media, Multi-Concentration, September 1994;
- Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, April 1993; and
- Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, July 1998.

COMPLIANCE ANALYTE LIST(S) (check all that apply)

NC Closed Facility List (.500 Rules)
X NC C & D List (New Rules)
NC Appendix I
NC Appendix I + Detects
NC Appendix II
NC Subtitle D Leachate List
Other:

1.0 CHAIN OF CUSTODY (COC) REVIEW

KH JD COC was properly signed by all parties.

KH JD Correct project name and number are on the form.

- The Project # on the COC is 0739602407.200 and it should be 0739602407.100
- KH JD Sample receipt condition at laboratory was acceptable.

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 2 of 5

KH JD Each sample and blank submitted for analysis appears in the report.

Notes:	
• •	CALEDI E HOLDING EDER

2.0 SAMPLE HOLDING TIMES

- <u>KH</u> <u>JD</u> Holding times for extraction and/or analysis were met for each analytical Method (see below for reference).
 - The Holding time for analysis was not met for Sulfide Analysis EPA Method 376.1 for MW-1 and MW-3. (Hold Date 8/16/07, Analysis Date/Time 9/6/07 16:50)

Notes:										
Review Criteria										
Method	Analytes	Holding Time								
SW-846 Method 8260 and 8011	VOCs	14 days								
SW-846 Methods 8270, 8080,	SVOCs, PCBs,	7 days for extraction, 40 days								
8081, 8082, and 8151	pesticides and herbicides	from extraction for analysis								
SW-846 Methods 6000 and 7000	Metals except mercury	6 months (no temperature								
Series		requirements)								
SW-846 Method 7470	Mercury	28 days								
SW-846 Method 376.1	Sulfide	7 days								
SW-846 Method 9010	Cyanide	14 days								
EPA Method 300	Nitrate/Sulfate	48 hours/28 days								
EPA Method 405.1	BOD	48 hours								
EPA Method 410.4	COD	28 days								
EPA Method 365.4	Phosphorous	28 days								

3.0 LABORATORY QUALITY CONTROL REVIEW

<u>KH</u> <u>JD</u> Laboratory analyzed at least one internal blank for each method, where applicable.

KH JD Laboratory blank is interference-free.

- Calcium @ 16.1 ug/L (J)
- Iron @ 23 ug/L (J)

For Calcium and Iron, the method blank had a positive result for the analyte; however, the concentration in the method blank is less than 10% of the sample result, which is allowable under NELAC guidelines.

- Nitrite as N @ 0.014 mg/L (J)
- Nitrate/Nitrate as N @ 0.02 mg/L (J)

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 3 of 5

- Ammonia as N @ 0.047 mg/L (J)
- KH JD Surrogate recoveries are provided for each analytical method, where applicable.
- <u>KH</u> <u>JD</u> Surrogate recoveries for each method are within the acceptable limits (i.e., at least 50% of the surrogates were within range).
- KH JD MS/MSD/LCS data results are provided for each analytical method.
 - Due to an analyst error, the MS and MSD for the Chloride analysis were not spiked. The lab's QA department reviewed and approved all data for this analysis.
- <u>KH</u> <u>JD</u> MS/MSD/LCS recoveries for each method are within the acceptable limits (i.e., at least 1 of the 3 were within range).
 - The percent recovery for the MS of Nitrate/Nitrite as N cannot be accurately calculated due to the high concentration of analyte inherent in the sample (flagged with QM-02).
 - The RPD and percent recovery for the MSD of Nitrate/Nitrite as N cannot be accurately calculated due to the high concentration of analyte inherent in the sample (flagged with QM-02).
 - The spike recovery was outside acceptance limits for the MS and MSD for Total Alkalinity. The batch was accepted based on acceptable LCS recovery (flagged with QM-07).

Notes	
4.0	ANALYTE LISTS/METHODS
KH JD (inc	The proper number of constituents are present for each analyte list as identified above luding detects where applicable).
KH JD	Proper EPA SW-846 analytical methods were used for analysis.
Notes: _	

5.0 DATA REPORTING

- <u>KH JD</u> All analytical reporting associated with the event was performed by the contracted lab.
- KH JD Trip, field and/or equipment, and laboratory blank results have all been reported. All detects for blanks are listed below by constituent. All laboratory method blanks, if any, have been 'flagged' with a 'B' where detected in other samples as appropriate and a laboratory narrative was provided. If the sample was flagged by the laboratory and is not within 5X of

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 4 of 5

the concentration in the blank (or 10X for commonly detected laboratory contaminants-acetone, methylene chloride and phthalates), list below with explanation if flags should be removed. If flags need to be added for samples, also list below.

Lab Blank:

- Calcium @ 16.1 ug/L (J)
- Iron @ 23 ug/L (J)
- Nitrate as N @ 0.014 mg/L (J)
- Nitrate/Nitrite as N @ 0.020 mg/L (J)
- Ammonia as N @ 0.047 mg/L (J)

No "B" flags are needed.

- KH JD It is clear from the laboratory report that samples have or have not been diluted during analysis, and if the samples have been diluted, the result is reported as a multiple of the dilution (e.g., a sample diluted 10x resulting in an analytical detection of 1.0 should be reported as 10). Those that have been diluted are listed below with the dilution factor.
- KH JD The report provides the reporting limit for each constituent.
- <u>KH</u> <u>JD</u> The results were reported at or below their proper reporting limits (i.e., MDLs with SWSLs reported). Those that are not reported correctly are listed below (by constituent) with the proper reporting limit listed beside them. State if the reporting limit error is due to dilutions.
- KH JD No organic constituents were reported above their respective SWSLs, and no inorganic or organic constituents were reported above their respective NC 2L Drinking Water Standards/GWPS in wells, or field/equipment/trip blanks, or above applicable surface water standards in surface water points.

The following constituents were reported above their respective SWSL and NC 2L.

- Iron in MW-1 and MW-3 at 364 ug/L and 2920 ug/L, respectively.
- Mercury in MW-3 @ 1.28 ug/L.

The following constitutent was reported above its respective SWSL.

- Trichlorofluoromethane in MW-3 @ 34 ug/L
- <u>KH</u> <u>JD</u> No inorganic and organic constituents were detected in a well or surface water point at concentrations outside of their historical range (more than 5X previous concentrations or first-time detections).
 - Trichlorofluoromethane was detected outside of its historical range.
- KH JD Other report issues/Communications with laboratory/etc.:

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 5 of 5

Notes:					

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville FL, 32216-6069

Phone: 904.296.3007

FAX: 904.296.6210

Wednesday, August 29, 2007

Golder Associates, Inc. (GO007)

Attn: Rachel Kirkman

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407

RE: Laboratory Results for

Project Number: 073-9602407.200, Project Name/Desc: Wake Material Recovery

ENCO Workorder: B707163

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, August 10, 2007.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Jacksonville. Data from outside organizations will be reported under separate cover.

Kuna M. Tompanus

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Chris Tompkins

Project Manager

Enclosure(s)

CASE NARRATIVE

Date: August 11, 2007

Client: Golder Associates, Inc.
Project: Wake Material Recovery

Lab ID: B707163

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Quality Control Remarks

There were no quality control anomalies present.

Other Comments

Sample Receipt Conditions: The samples were recieved in appropriate condition. The samples were not checked for residual chlorine, as it is not required for ground water samples. Samples were not logged in from a prelog.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Chris Tompkins Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Glient ID: MW-8 (Oup) (Labito:	8707463-01 Sampled: 08/08	08/07 11/48 Received: 08/10/07-09:30	*. ***
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 7470A	09/05/07	08/17/07 05:01	8/17/2007 12:01	
EPA 8260B	08/22/07	08/16/07 09:00	8/17/2007 00:03	

NORTH CAROLINA SWS SAMPLE DETECTION SUMMARY

Client 3D: MW-3 (Dup)				Lab ID:	B 707163- 0:	[-			
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
Mercury	1.30		1	0.11	0.20	0.2	ug/L	EPA 7470A	
Trichlorofluoromethane	11		1	0.30	1.0	5	ug/L	EPA 8260B	HDSP

ANALYTICAL RESULTS

Description: MW-3 (Dup)

Lab Sample ID: B707163-01

Received: 08/10/07 09:30

Matrix: Water

Sampled: 08/08/07 11:48

Work Order: B707163

Project: Wake Material Recovery

Sampled By: Client

Volatile Organic Compounds by GCMS

* - ENCO Jacksonville certified analyte [NC 442]

Analyte [CAS Number] Trichlorofluoromethane [75-69-4] *	Results 11	<u>Flaq</u>	<u>Units</u> ug/L	DF 1	MDL ME 0.30 1.		Method EPA 8260B	Analyzed 08/17/07 00:03	By ds	Notes HDSP
Surrogates	Results	DF	Spike Lvi	% Rec	% Rec Limit	ts Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	53	1	50.0	106 %	60-130	7H17007	EPA 8260B	08/17/07 00:03	ds	HDSP
Dibromofluoromethane	53	. 1	50.0	<i>107 %</i>	66-131	7H17007	EPA 8260B	08/17/07 00:03	ds	HDSP
Toluene-d8	46	1	50.0	93 %	67-139	7H17007	EPA 8260B	08/17/07 00:03	ds	HDSP

Description: MW-3 (Dup)

Lab Sample ID: B707163-01

Received: 08/10/07 09:30

Matrix: Water

Sampled: 08/08/07 11:48

Work Order: B707163

Project: Wake Material Recovery

Sampled By: Client

Metals by EPA 6000/7000 Series Methods

* - ENCO Jacksonville certified analyte [NC 442]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	Method	Analyzed	<u>B</u> y	<u>Notes</u>
Mercury [7439-97-6] *	1.30		ug/L	1	0.11	0.20	0.2	EPA 7470A	08/17/07 12:01	SMA	

Volatile Organic Compounds by GCMS - Quality Control

Batch 7H17007 - EPA 5030B_MS

Blank (7H17007-BLK1)

Prepared: 08/16/2007 09:00 Analyzed: 08/16/2007 16:35

					.Spike	Source		%REC	RPD T
Analyte Trichlorofluoromethane	Result 0.30	Flag U	1.0	Units ug/L	Leyel	Result	%REC		RRD Limit Notes
Surrogate: Dibromofluoromethane	48			ug/L	50.0		95	66-131	
Surrogate: Toluene-d8	44			ug/L	50.0		89	67-139	
Surrogate: 4-Bromofluorobenzene	50			ug/L	50.0		100	60-130	

Blank (7H17007-BLK2)

Prepared: 08/16/2007 09:00 Analyzed: 08/17/2007 05:21

Analyte	Result	Flag	MRL	- Units	Spike S	outce esult WREC	%REC Umits &	RPD PD Light Notes
Trichlorofluoromethane	0.30	U	1.0	ug/L				
Surrogate: Dibromofluoromethane	46			ug/L	50.0	92	66-131	The state of the s
Surrogate: Toluene-d8	45			ug/L	50.0	89	<i>67-139</i>	
Surrogate: 4-Bromofluorobenzene	49			ug/L	50.0	<i>99</i>	60-130	

LCS (7H17007-BS1)

Prepared: 08/16/2007 09:00 Analyzed: 08/16/2007 17:07

Anblyte	'Result Flag	MRL	Units	Spike Jævel	Source Result %REC	%REC RPD Limits /RPD Limit Notes:
1,1-Dichloroethene	21	1.0	ug/L	20.0	105	70-130
Benzene	19	1.0	ug/L	20.0	96	80-120
Trichloroethene	18	1.0	ug/L	20.0	92	70-125
Toluene	19	1.0	ug/L	20.0	97	75-120
Chlorobenzene	21	1.0	ug/L	20.0	106	80-120

Matrix Spike (7H17007-MS1)

Source: B707130-06

Prepared: 08/16/2007 09:00 Analyzed: 08/16/2007 17:41

Analyte	Result Fla	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	. RPO RPD Umili	Notes
1,1-Dichloroethene	22	1.0	ug/L	20.0	0.20 U	110	70-130		
Benzene	21	1.0	ug/L	20.0	0.20 U	103	80-120		
Trichloroethene	20	1.0	ug/L	20.0	0.30 U	99	70-125		
Toluene	21	1.0	ug/L	20.0	0.20 U	104	75-120		
Chlorobenzene	22	1.0	ug/L	20.0	0.20 U	111	80-120		

Matrix Spike Dup (7H17007-MSD1)

Prepared: 08/16/2007 09:00 Analyzed: 08/16/2007 18:12

Source: B707130-06

Analyze	Result Flag	J MRL	Units :	Spike Level	Source Result	%REC	Worker Limits	RPĎ	- RPD Limit - P	lotes
1,1-Dichloroethene	24	1.0	ug/L	20.0	0.20 U	118	70-130	7	26 ,	
Benzene	21	1.0	ug/L	20.0	0.20 U	105	80-120	1	22	
Trichloroethene	20	1.0	ug/L	20.0	0.30 U	102	70-125	3	24	
Toluene	21	1.0	ug/L	20.0	0.20 U	106	75-120	1	24	
Chlorobenzene	24	1.0	ug/L	20.0	0.20 U	118	80-120	6	11	

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 7H17001 - EPA 7470A

Blank (7H17001-BLK1)

Prepared: 08/17/2007 05:01 Analyzed: 08/17/2007 11:17

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 7H17001 - EPA 7470A

Blank (7H17001-BLK1) Continued

Prepared: 08/17/2007 05:01 Analyzed: 08/17/2007 11:17

Analyte		Library Live in	Units	Spike Source %REC RPD Limit Notes
Mercury	0.11	U 0.20	ua/l	

LCS (7H17001-BS1)

Prepared: 08/17/2007 05:01 Analyzed: 08/17/2007 11:19

Analyte	Result Flag	MRL	Units	Spike Level	Source Result %REC	%REC Limits R	RPD PD Limit Notes
Mercury	5.37	0.20	ug/L	5.00	107	85-115	

Matrix Spike (7H17001-MS1)

Source: B707196-01

Prepared: 08/17/2007 05:01 Analyzed: 08/17/2007 11:21

Analyte	Result Flag	MRL	Units	Spike Level	Source Result	%REC	%RÉC Limits	RPD Limit Notes
Mercury	56.6	2.00	ug/L	50.0	1.10 U	113	75-125	

Matrix Spike Dup (7H17001-MSD1)

Source: B707196-01

Prepared: 08/17/2007 05:01 Analyzed: 08/17/2007 11:24

Analyte	Result Hay	MRL	Units	Spike Level	Source Result	%ŘEC	%REC Limits	RPD	RPD Limit	Notes
Mercury	56.4	2.00	ug/L	50.0	1.10 U	113	75-125	0.4	20	

FLAGS/NOTES AND DEFINITIONS

В	The analyte was detected in the associated method blank.
D	The sample was analyzed at dilution.
J	The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
U	The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
MRL	Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
HDSP	Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

ENVIRONMENTAL CONSERVATION LABORATORIES

Ph. (904) 296-3007 • Fax (904) 296-6210 4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069

Ph. (407) 826-5314 • Fax (407) 850-6945

Orlando, Florida 32824-8529 10207 General Drive

Cary, North Carolina 27513 1015 Passport Way

Ph. (919) 677-1669 • Fax (919) 677-9846

ENCO CompQAP No.: 960038G/0 CHAIN OF CUSTODY RECORD P.O. NUMBER PROJECT NO.

1. Messe proste Level 2" Data Report Trichter ofthe constrary, He EXPEDITED REPORT DELIVERY (surcharge) TIME 볼 <u>\</u> REMARKS DATE DATE Date Due: 1 なするでき RELINQUISHED BY: (SIGNATURE) REQUIRED ANALYSIS RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) NUMBER OF CONTAINERS SUBMITTED PRESERVATIVE विकार देखन ठ छ 8-9-2dn 17:00 TIME TIME ዾ DATE DATE REMARKS ? MATRIX TYPE A39 exes 0100 \$103 ENCO LOG NO. RELINQUISHED BY: (SIGNATURE) 100 m PHONE (336) 852-4503/ 4500 Locar Chu, St. H. NO Gracistore, UC 27467 B B B STATION DATE TIME GRAB COMP SAMPLE IDENTIFICATION B B C B B C B B C B B C B B C B B C B B C B B C CLIENT PROJECT MANAGER CUSTODY INTACT RELINQUISHED BY とりがしる) K- K+34 WCA - WAKE MAKE STANDED 073-9602407.20 TIME TIME DATE DATE Jon 8/16/07 B. Orapon 84:11 RATORY BY: (SIGNATURE **DORLANDO** CLIENT ADDRESS (CITY, STATE, ZIP) RELINQUISHED BY: (SIGNATURE) C-1-2007 RECEIVED BY (SIGNATURE) SAMPLE KIT PREPARED BY: PROJECT REFERENCE LUACKSONVILLE PROJECT LOC. 3 CLIENT NAME

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 1 of 3

Project Name: Material Recovery, LLC Landfill

Project Reference Number: <u>0739602407.100</u>

Sampling Event Date: 9/6/07

Review Date: 10/9/07

Report #: B707163

Initials: JD

Person(s) performing the review are to initial each item on this form as acknowledgement of data acceptance, or as acknowledgement of a review issue. In the case of the latter, a brief explanation should follow the applicable item.

Golder Associates Inc. has reviewed the laboratory certificates of analysis, chain-of-custody form, and laboratory provided sample group quality assurance and quality control data for the above referenced sample group to identify potential bias or inaccuracy, in general accordance with the following United States Environmental Protection Agency documents:

- Region III Modifications to Functional Guidelines for Organic Data Review Multi-Media, Multi-Concentration, September 1994;
- Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, April 1993; and
- Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, July 1998.

COMPLIANCE ANALYTE LIST(S) (check all that apply)

FF	
NC Closed Facility List (.500 Rules)	
NC C & D List (New Rules)	
NC Appendix I	
NC Appendix I + Detects	
NC Appendix II	
NC Subtitle D Leachate List	
Other: EPA Method 8260B for trichlorofluoromethane and EPA method 7470A for mercury	
1.0 CHAIN OF CUSTODY (COC) REVIEW	
JD COC was properly signed by all parties.	
JD Correct project name and number are on the form.	

The Project # on the COC is 0739602407,200 and it should be 0739602407.100

- JD Sample receipt condition at laboratory was acceptable.
- JD Each sample and blank submitted for analysis appears in the report.

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 2 of 3

least 1 of the 3 were within range).

Notes:

rage 2 01 3		Associati
Notes:		
2.0 SAMPLE HOLDING TIM	IES	
JD Holding times for extract Method (see below for referen	ion and/or analysis were met ce).	for each analytical
Notes:		
	Review Criteria	
Method	Analytes	Holding Time
SW-846 Method 8260 and 8011	VOCs	14 days
SW-846 Methods 8270, 8080,	SVOCs, PCBs,	7 days for extraction, 40 day
8081, 8082, and 8151	pesticides and herbicides	from extraction for analysis
SW-846 Methods 6000 and 7000 Series	Metals except mercury	6 months (no temperature requirements)
SW-846 Method 7470	Mercury	28 days
SW-846 Method 376.1	Sulfide	7 days
SW-846 Method 9010	Cyanide	14 days
EPA Method 300	Nitrate/Sulfate	48 hours/28 days
EPA Method 405.1	BOD	48 hours
EPA Method 410.4	COD	28 days
EPA Method 365.4	Phosphorous	28 days
3.0 LABORATORY QUALIT		othod where emplicable
JD Laboratory analyzed at least of Laboratory blank is interferen		etnod, where applicable.
JD Surrogate recoveries are p	provided for each analytical n	nethod, where applicable.
JD Surrogate recoveries for 6 50% of the surrogates we	each method are within the accre within range).	ceptable limits (i.e., at least
JD MS/MSD/LCS data results	are provided for each analytic	al method.
JD MS/MSD/LCS recoveries fo	r each method are within the	acceptable limits (i.e., at

GOLDER ASSOCIATES NC, INC. QUALITY ASSURANCE & QUALITY CONTROL LABORATORY DATA REVIEW Page 3 of 3

4.0	ANALYTE LISTS/METHODS
<u>JD</u>	The proper number of constituents are present for each analyte list as identified above (including detects where applicable).
<u>JD</u>	Proper EPA SW-846 analytical methods were used for analysis.
Not	es:
5.0	DATA REPORTING
<u>JD</u>	All analytical reporting associated with the event was performed by the contracted lab.
<u>JD</u>	Trip, field and/or equipment, and laboratory blank results have all been reported. All detects for blanks are listed below by constituent. All laboratory method blanks, if any, have been 'flagged' with a 'B' where detected in other samples as appropriate and a laboratory narrative was provided. If the sample was flagged by the laboratory and is not within 5X of the concentration in the blank (or 10X for commonly detected laboratory contaminants-acetone, methylene chloride and phthalates), list below with explanation if flags should be removed. If flags need to be added for samples, also list below.
<u>JD</u>	It is clear from the laboratory report that samples have or have not been diluted during analysis, and if the samples have been diluted, the result is reported as a multiple of the dilution (e.g., a sample diluted 10x resulting in an analytical detection of 1.0 should be reported as 10). Those that have been diluted are listed below with the dilution factor.
<u>JD</u>	The report provides the reporting limit for each constituent.
<u>JD</u>	The results were reported at or below their proper reporting limits (i.e., MDLs with SWSLs reported). Those that are not reported correctly are listed below (by constituent) with the proper reporting limit listed beside them. State if the reporting limit error is due to dilutions.
<u>JD</u>	No organic constituents were reported above their respective SWSLs, and no inorganic or organic constituents were reported above their respective NC 2L Drinking Water Standards/GWPS in wells, or field/equipment/trip blanks, or above applicable surface water standards in surface water points.
JD	No inorganic and organic constituents were detected in a well or surface water point at concentrations outside of their historical range (more than 5X previous concentrations or first-time detections).
ΊĽ	Other report issues/Communications with laboratory/etc.:

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville FL, 32216-6069

Phone: 904.296.3007 FAX: 904.296.6210

Monday, September 17, 2007

Golder Associates, Inc. (GO007)

Attn: Rachel Kirkman

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407

RE: **Laboratory Results for**

Project Number: 0739602407.100, Project Name/Desc: Material Recovery, LLC

ENCO Workorder: B708018

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Saturday, September 8, 2007.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Jacksonville. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Lorraine Strong For Chris Tompkins

Project Manager

Enclosure(s)

The total number of pages in this report, including this page is 9.

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client 10: 9281-N	S-Ŵ	9, 8708018-01 Sampled: 09/0	6/07 14:30 Received: 509/08/07 109;00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260B	09/20/07	09/12/07 09:00	9/13/2007 01:58

Client 30: Field Blan	nk Laba	D: 8708018-02 Sampled: 09/6	6/07 14:55 Received 09/08/07-09:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260B	09/20/07	09/12/07 09:00	9/13/2007 02:29

client to: (STRIPBIA	NK Jaba	D: 8708018-03 Sampled: 09/07	//07-00:00 Received: 09/08/07 b9:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260B	09/21/07	09/12/07 09:00	9/12/2007 17:31

NORTH CAROLINA SWS SAMPLE DETECTION SUMMARY

Client 10: 9231-MW-3				Läbyd:	B708018-01				
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
Trichlorofluoromethane	31		1	0.30	1.0	1	ug/L	EPA 8260B	

ANALYTICAL RESULTS

Description: 9231-MW-3

Lab Sample ID: B708018-01

Received: 09/08/07 09:00

Matrix: Water

***atci

Work Order: B708018

Project: Material Recovery, LLC

Sampled By: Ben Draper

Sampled: 09/06/07 14:30

Volatile Organic Compounds by GCMS

* - ENCO Jacksonville certified analyte [NC 442]

Analyte [CAS Number] Trichlorofluoromethane [75-69-4] *	Results 31	Flag	<u>Units</u> ug/L	DF 1	MDL MRL 0.30 1.0	NC SWSL	Method EPA 8260B	Analyzed 09/13/07 01:58	By ds	<u>Notes</u>
Surrogates	Resuits	DF	Spike Lvl	% Rec	% Rec Limits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	49	1	50.0	99 %	60-130	7113014	EPA 8260B	09/13/07 01:58	ds	· ·
Dibromofluoromethane	50	1	50.0	100 %	66-131	7113014	EPA 8260B	09/13/07 01:58	ds	
Toluene-d8	<i>48</i>	1	50.0	96 %	67-139	7113014	EPA 8260B	09/13/07 01:58	ds	

Description: Field Blank

Lab Sample ID: B708018-02

Received: 09/08/07 09:00

Matrix: Water

Sampled: 09/06/07 14:55

Work Order: B708018

Project: Material Recovery, LLC

Sampled By: Ben Draper

Volatile Organic Compounds by GCMS

* - ENCO Jacksonville certified analyte [NC 442]

Analyte [CAS Number] Trichlorofluoromethane [75-69-4] *	Results 0.30	Flag U	<u>Units</u> ug/L	<u>DF</u> 1	MDL 0.30	MRL 1.0	NC SWSL 1	Method EPA 8260B	Analyzed 09/13/07 02:29	By ds	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec L	imits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	49	1	50.0	97 %	60-13	30	7113014	EPA 8260B	09/13/07 02:29	ds	-
Dibromofluoromethane	49	1	50.0	99 %	66-13	31	7113014	EPA 8260B	09/13/07 02:29	ds	
Toluene-d8	49	1	50.0	97 %	67-13	39	7113014	EPA 8260B	09/13/07 02:29	ds	

Description: TRIP BLANK

Lab Sample ID: B708018-03

Received: 09/08/07 09:00

Matrix: Water

Sampled: 09/07/07 00:00

Work Order: B708018

Project: Material Recovery, LLC

Sampled By:

Volatile Organic Compounds by GCMS

* - ENCO Jacksonville certified analyte [NC 442]

Analyte [CAS Number] Trichlorofluoromethane [75-69-4] *	Results 0.30	<u>Flag</u> U	<u>Units</u> ug/L	<u>DF</u> 1	MDL MI 0.30 1.	_	Method EPA 8260B	<u>Analyzed</u> 09/12/07 17:31	By ds	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Limit	ts Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	49	1	50.0	98 %	60-130	7113014	EPA 8260B	09/12/07 17:31	ds	
Dibromofluoromethane	49	1	50.0	98 %	66-131	7113014	EPA 8260B	09/12/07 17:31	ds	
Toluene-d8	49	1	50.0	98 %	<i>67-139</i>	7113014	EPA 8260B	09/12/07 17:31	ds	

QUALITY CONTROL

Volatile Organic Compounds by GCMS - Quality Control

Batch 7I13014 - EPA 5030B_MS

Blank (7I13014-BLK1)

Prepared: 09/12/2007 09:00 Analyzed: 09/12/2007 17:00

Analyte	Result	Flag	MRL	Units	Spike Si Leve R	ource esuit 9 6REC	%REC Limits	RPD RPD Jamits No	tes
Trichlorofluoromethane	0.30	U	1.0	ug/L					
Surrogate: Dibromofluoromethane	50			ug/L	50.0	99	66-131		
Surrogate: Toluene-d8	49			ug/L	50.0	98	67-139		
Surrogate: 4-Bromofluorobenzene	48			ug/L	50.0	97	60-130		

LCS (7I13014-BS1)

Prepared: 09/12/2007 09:00 Analyzed: 09/12/2007 23:51

Añalijia	Result Fia	g MRL	Units	Spike S Level i	ourge Lesuit "9 6REC	%REC Limits ≠ J	RPD
1,1-Dichloroethene	17	1.0	ug/L	20.0	86	70-130	
Benzene	20	1.0	ug/L	20.0	98	80-120	'
Trichloroethene	19	1.0	ug/L	20.0	96	70-125	
Toluene	19	1.0	ug/L	20.0	93	75-120	
Chiorobenzene	19	1.0	ug/L	20.0	94	80-120	

Matrix Spike (7I13014-MS1)

Source: B707838-20

Prepared: 09/12/2007 09:00 Analyzed: 09/13/2007 00:23

Analyte	Result Flag	j MRL	Units	Spike Level	Source Result	96REC	96REC Limits	RPD: RPD Limit Notes
1,1-Dichloroethene	18	1.0	ug/L	20.0	0.20 U	90	70-130	
Benzene	21	1.0	ug/L	20.0	0.20 U	105	80-120	
Trichloroethene	20	1.0	ug/L	20.0	0.30 U	101	70-125	
Toluene	20	1.0	ug/L	20.0	0.20 U	98	75-120	
Chlorobenzene	21	1.0	ug/L	20.0	0.20 U	103	80-120	

Matrix Spike Dup (7I13014-MSD1)

Source: B707838-20

Prepared: 09/12/2007 09:00 Analyzed: 09/13/2007 00:54

				Spike	Source	F 1	9/REC		. RPD	
Analyte	Result Flag	MRL	Units	Level	Result	%REC	umits	RPD	,Umit	Notes
1,1-Dichloroethene	17	1.0	ug/L	20.0	0.20 U	86	70-130	4	26	
Benzene	19	1.0	ug/L	20.0	0.20 U	95	80-120	10	22	
Trichloroethene	19	1.0	ug/L	20.0	0.30 U	97	70-125	5	24	
Toluene	18	1.0	ug/L	20.0	0.20 U	91	75-120	7	24	
Chlorobenzene	19	1.0	ug/L	20.0	0.20 U	95	80-120	8	11	
										

FLAGS/NOTES AND DEFINITIONS

В	The analyte was detected in the associated method blank.
D	The sample was analyzed at dilution.
J	The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable
U	The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
MRL	Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.

Approad by

Note : All samples summitted to ENCOLANS are in accordance with the closure and conditions felled on the measure of this kin, unless phar within agreements ones.

LOA for Benjamin Duspen

(do som a

ab Workorder R7086 Unacceptable Hote: Resh neguests subject to acceptance by the lacifity K Standard NCAPPTVOSS CTT-ST-Expedited Sample Comments Oue / and Times Acceptable APPLICATION OF HIS SHEED WORK OF THE STATE O ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD Con, NC IISTO (\$18) OT - 168 Fox (\$19) 677-5948 Regesting Analyse: ceved By Service De 1015 Pessport Way 3/1/01 9:30 Total # of Containers 8260B Extended t xibneqqA 808S8 1810 Escative Part Court, Sur 211 Jacksonda, FL 32215-6763 (804) 285-8007 Fm (904) 296-6210 C-313 Water For a black to confirm the first of or more than the first of the computer of the confirmation of the conf Walet Water 0739502407.286 | 0.6 Material Recovery, LLC Factor + (8 von 100 5) 1-16 Accounts Payable anter As & Temporar Areceti Rachel Kirkman Comp. Greb y (407) 125-5314 Fax (407) 850-5945 letinoustred By eporting Contact Popletal Mumber 9/6/07/14:30 14:53 10775 Cartral Port Dr. Served 2 des regor Colorados Estados Colorados Grands, FL 32824 the Wingam Widding 4990 Koger Blvd., Surr 44 Collection Date (336) 852-4904 44167 Golder Associates, Inc. (GOM7): Greensboro, NC 27407 Sample ID IF and Identifications (336) 852-4903 Same, Attended (Prat) 9231-MW-3 Fleid Blank Trip Blank Bu Umper Sex y

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211
Jacksonville FL 32216-6069

Phone: 904.296.3007

FAX: 904.296.6210

Monday, September 17, 2007

Golder Associates, Inc. (GO007)

Attn: Rachel Kirkman

The Wingate Building 4900 Koger Blvd., Suite 140

Greensboro, NC 27407

RE: Laboratory Results for

Project Number: 0739602407.100, Project Name/Desc: Material Recovery, LLC

ENCO Workorder: B708022

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Saturday, September 8, 2007.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Jacksonville. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Chris Tompkins

Project Manager

Enclosure(s)

iostura m. Tomplius

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client 3D: MW-3	Lab 10, 187	08022-01 Sampled: 09/0	6/07.13:05 Received: 09/08/07-09:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
TO-15	09/20/07	09/13/07 10:38	9/13/2007 16:52

Client ID: MW-3	i abi	i): 8708022-01RE1 Sampled: 09/06/	07-13:05 Received: 09/08/07-09:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
TO-15	09/20/07	09/14/07 09:00	9/14/2007 13:05

SAMPLE DETECTION SUMMARY

Analyte	Results	Flag	MRL	Units	Method	Notes
Acetone	0.045	J	0.095	mg/m³ Air	TO-15	
				CONTROL OF SECURITION OF SECUR		
entap: PW-3		Lab ID: 87	08022-01RF1			
ent (p: MW-2) nalyte	Results	Lab ID; · · ·B7 Flag	0802 2-01 RF1 MRL	Units	Method	Notes
ent 1D: MW-2 Analyte Methylene chloride	Results 0.164	LOD AV.		Units mg/m³ Air	Method TO-15	Notes

ANALYTICAL RESULTS

Description: MW-3

Matrix: Air

Project: Material Recovery, LLC

Lab Sample ID: B708022-01

Sampled: 09/06/07 13:05

Sampled By: Ben Draper

Received: 09/08/07 09:00

Work Order: B708022

% Solids:

Volatile Organic Compounds by GCMS

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	MRL	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,1,1-Trichloroethane [71-55-6]	0.004	U	mg/m³ Air	1	0.004	0.014	7117012	TO-15	09/14/07 13:05	sga	
1,1,2,2-Tetrachloroethane [79-34-5]	0.009	U	mg/m³ Air	1	0.009	0.017	7117012	TO-15	09/14/07 13:05	sga	
1,1,2-Trichloroethane [79-00-5]	0.005	U	mg/m³ Air	. 1	0.005	0.014	7117012	TO-15	09/14/07 13:05	sga	
1,1-Dichloroethane [75-34-3]	0.005	U	mg/m³ Air	1	0.005	0.010	7[17012	TO-15	09/14/07 13:05	sga	
1,1-Dichloroethene [75-35-4]	0.005	U	mg/m³ Air	1	0.005	0.010	7117012	TO-15	09/14/07 13:05	sga	
1,2-Dibromoethane [106-93-4]	0.007	U	mg/m³ Air	1	0.007	0.019	7117012	TO-15	09/14/07 13:05	sga	
1,2-Dichlorobenzene [95-50-1]	0.007	U	mg/m³ Air	`1	0.007	0.015	7117012	TO-15	09/14/07 13:05	sga	
1,2-Dichloroethane [107-06-2]	0.004	U	mg/m³ Air	1 .	0.004	0.010	7117012	TO-15	09/14/07 13:05	sga	
1,2-Dichloropropane [78-87-5]	0.007	U	mg/m³ Air	1	0.007	0.012	7117012	TO-15	09/14/07 13:05	sga	
1,4-Dichlorobenzene [106-46-7]	0.006	· U	mg/m³ Air	1	0.006	0.015	7117012	TO-15	09/14/07 13:05	sga	
2-Butanone [78-93-3]	0.003	U	mg/m³ Air	· 1	0.003	0.007	7117012	TO-15	09/14/07 13:05	sga	
2-Hexanone [591-78-6]	0.004	U	mg/m³ Air	1	0.004	0.010	7117012	TO-15	09/14/07 13:05	sga	
Acetone [67-64-1]	0.045	J	mg/m³ Air	1	0.035	0.095	7117012	TO-15	09/13/07 16:52	sga	
Benzene [71-43-2]	0.004	U	mg/m³ Air	1	0.004	0.008	7117012	TO-15	09/14/07 13:05	sga	
Bromodichloromethane [75-27-4]	0.009	U	mg/m³ Air	1	0.009	0.017	7117012	TO-15	09/14/07 13:05	sga	
Bromoform [75-25-2]	0.011	U	mg/m³ Air	1	0.011	0.026	7117012	TO-15	09/14/07 13:05	sga	
Carbon disulfide [75-15-0]	0.004	U	mg/m³ Air	1	0.004	0.008	7117012	TO-15	09/14/07 13:05	sga	
Carbon tetrachloride [56-23-5]	0.007	U	mg/m³ Air	1	0.007	0.016	7117012	TO-15	09/14/07 13:05	sga	
Chlorobenzene [108-90-7]	0.004	U	mg/m³ Air	1	0.004	0.012	7117012	TO-15	09/14/07 13:05	sga	
Chloroethane [75-00-3]	0.004	U	mg/m³ Air	1	0.004	0.007	7117012	TO-15	09/14/07 13:05	sga	
Chloroform [67-66-3]	0.006	υ	mg/m³ Air	1	0.006	0.012	7117012	TO-15	09/14/07 13:05	sga	
cis-1,2-Dichloroethene [156-59-2]	0.004	U	mg/m³ Air	1	0.004	0.010	7117012	TO-15	09/14/07 13:05	sga	
cis-1,3-Dichloropropene [10061-01-5]	0.005	U	mg/m³ Air	1	0.005	0.011	7117012	TO-15	09/14/07 13:05	sga	
Dibromochloromethane [124-48-1]	0.005	U	mg/m³ Air	1	0.005	0.010	7117012	TO-15	09/14/07 13:05	sga	
Ethylbenzene [100-41-4]	0.006	U	mg/m³ Air	1	0.006	0.011	7117012	TO-15	09/14/07 13:05	sga	
m,p-Xylenes [108-38-3/106-42-3]	0.012	U	mg/m³ Air	1	0.012	0.014	7117012	TO-15	09/14/07 13:05	sga	
Methylene chloride [75-09-2]	0.164		mg/m³ Air	1	0.006	0.009	7117012	TO-15	09/14/07 13:05	sga	,
o-Xylene [95-47-6]	0.004	U	mg/m³ Air	1	0.004	0.011	7117012	TO-15	09/14/07 13:05	sga	
Styrene [100-42-5]	0.005	U	mg/m³ Air	1	0.005	0.011	7117012	TO-15	09/14/07 13:05	sga	
Tetrachioroethene [127-18-4]	0.011	ប	mg/m³ Air	1	0.011	0.017	7117012	TO-15	09/14/07 13:05	sga	
Toluene [108-88-3]	0.007	3	mg/m³ Air	1	0.005	0.009	7117012	TO-15	09/14/07 13:05	sga	
trans-1,2-Dichloroethene [156-60-5]	0.009	U	mg/m³ Air	1	0.009	0.010	7117012	TO-15	09/14/07 13:05	sga	
Trichloroethene [79-01-6]	0.008	U	mg/m³ Air	1	800.0	0.013	7117012	TO-15	09/14/07 13:05	sga	
Trichlorofluoromethane [75-69-4]	0.006	U	mg/m³ Air	1	0.006	0.014	7117012	TO-15	09/14/07 13:05	sga	
Vinyl acetate [108-05-4]	0.003	U	mg/m³ Air	1	0.003	0.009	7117012	TO-15	09/14/07 13:05	sga	
Vinyl chloride [75-01-4]	0.002	U	mg/m³ Air	1	0.002	0.006	7117012	TO-15	09/14/07 13:05	sga	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	34.3	1	31.2	110 %	42-	157	7117012	TO-15	09/14/07 13:05	sga	

OUALITY CONTROL

Volatile Organic Compounds by GCMS - Quality Control

Batch 7117012 - Same

Blank (7I17012-BLK1)

Prepared: 09/13/2007 09:00 Analyzed: 09/13/2007 09:51

						Source		%REC	000	RPD Imit	Notes
Analyte Vinyl chloride	Result 0.002	F100	0.006	Wnits mg/m³ Air	1evel	Result	%REC	Limits	RPD 4	application of	HOLO
Chloroethane	0.002	U	0.007	mg/m³ Air							
Trichlorofluoromethane	0.006	U,	0.014	mg/m³ Air							
1,1-Dichloroethane	0.005	U .	0.014	mg/m³ Air							
Acetone	0.002	U	0.006	mg/m³ Air							
Carbon disulfide	0.004	U	0.008	mg/m³ Air							
Methylene chloride	0.006	U	0.009	mg/m³ Air							
trans-1,2-Dichloroethene	0.009	U	0.010	mg/m³ Air							
1,1-Dichloroethene	0.005	U	0.010	mg/m³ Air							
Vinyl acetate	0.003	U.	0.009	mg/m³ Air							
cis-1,2-Dichloroethene	0.004	υ	0.010	mg/m³ Air							
2-Butanone	0.003	U	0.007	mg/m³ Air							
Chloroform	0.006	U	0.012	mg/m³ Air							
1,2-Dichloroethane	0.004	U	0.010	mg/m³ Air							
1,1,1-Trichloroethane	0.004	U	0.014	mg/m³ Air							
Carbon tetrachloride	0.007	U	0.016	mg/m³ Air							
Benzene	0.004	U	0.008	mg/m³ Air							
1,2-Dichloropropane	0.007	U	0.012	mg/m³ Air							
Trichloroethene	0.008	U	0.013	mg/m³ Air							
Bromodichloromethane	0.009	U	0.017	mg/m³ Air						,	
cis-1,3-Dichloropropene	0.005	U	0.011	mg/m³ Air							
1,1,2-Trichloroethane	0.005	U	0.014	mg/m³ Air							
Toluene	0.005	U	0.009	mg/m³ Air							
2-Hexanone	0.004	U	0.010	mg/m³ Air							
1,2-Dibromoethane	0.007	U	0.019	mg/m³ Air							
Tetrachloroethene	0.011	U	0.017	mg/m³ Air							
Dibromochloromethane	0.005	U	0.010	mg/m³ Air							
Chlorobenzene	0.004	U	0.012	mg/m³ Air							
Ethylbenzene	0.006	U	0.011	mg/m³ Air							
m,p-Xylenes	0.012	U	0.014	mg/m³ Air							
Styrene	0.005	U	0.011	mg/m³ Air							
o-Xylene	0.004	U	0.011	mg/m³ Air							
Bromoform	0.011	U	0.026	mg/m³ Air							
1,1,2,2-Tetrachloroethane	0.009	U	0.017	mg/m³ Air							
1,4-Dichlorobenzene	0.006	U	0.015	mg/m³ Air							
1,2-Dichlorobenzene	0.007	U	0.015	mg/m³ Air							-
Surrogate: 4-Bromofluorobenzene	32.3			ppbv	31.2		103	42-157			-

Blank (7I17012-BLK2)

Prepared: 09/14/2007 09:00 Analyzed: 09/14/2007 10:25

	The state of the	* W.	3.7	455.14 ft 5 1 -	ALC: NO.	Source	%R		pon	1 To 1	
Analyze	Result	Fleg	MRL	Units	Spike Level		REC LIM	is RPD	Jumil	Not	8
Vinyl chloride	0.002	U	0.006	mg/m³ Air							
Chloroethane	0.004	U	0.007	mg/m³ Air							
Trichlorofluoromethane	0.006	U	0.014	mg/m³ Air							
1,1-Dichloroethane	0.005	U	0.010	mg/m³ Air							
Acetone	0.002	U	0.006	mg/m³ Air							
Carbon disulfide	0.004	U	0.008	mg/m³ Air							
Methylene chloride	0.006	U	0.009	mg/m³ Air							

QUALITY CONTROL

Volatile Organic Compounds by GCMS - Quality Control

Batch 7I17012 - Same

Blank (7I17012-BLK2) Continued

Prepared: 09/14/2007 09:00 Analyzed: 09/14/2007 10:25

	And the second		377 X 4 4 1 5 2	an a second	transfer and the	- A-1	3.4 × 14 × 15 × 19 ×		
Analyte	Result	Flag	MRL	Units		ource esult %		orec imits r	PD mit Notes
trans-1,2-Dichloroethene	0.009	U	0.010	mg/m³ Air					
1,1-Dichloroethene	0.005	U	0.010	mg/m³ Air					
Vinyl acetate	0.003	U	0.009	mg/m³ Air					
cis-1,2-Dichloroethene	0.004	U	0.010	mg/m³ Air					
2-Butanone	0.003	υ	0.007	mg/m³ Air					
Chloroform	0.006	. U	0.012	mg/m³ Air					
1,2-Dichloroethane	0.004	U	0.010	mg/m³ Air					
1,1,1-Trichloroethane	0.004	Ú	0.014	mg/m³ Air					
Carbon tetrachloride	0.007	U	0.016	mg/m³ Air					
Benzene	0.004	U	0.008	mg/m³ Air					
1,2-Dichloropropane	0.007	U	0.012	mg/m³ Air					
Trichloroethene	0.008	Ü	0.013	mg/m³ Air					
Bromodichloromethane	0.009	· U	0.017	mg/m³ Air					
cis-1,3-Dichloropropene	0.005	U	0.011	mg/m³ Air					
1,1,2-Trichloroethane	0.005	U	0.014	mg/m³ Air					
Toluene	0.005	U	0.009	mg/m³ Air					
2-Hexanone	0.004	U	0.010	mg/m³ Air					
1,2-Dibromoethane	0.007	U	0.019	mg/m³ Air					
Tetrachloroethene	0.011	U	0.017	mg/m³ Air					
Dibromochloromethane	0.005	U	0.010	mg/m³ Air					
Chlorobenzene	0.004	U	0.012	mg/m³ Air					
Ethylbenzene	0.006	U	0.011	mg/m³ Air					
m,p-Xylenes	0.012	U	0.014	mg/m³ Air					
Styrene	0.005	U	0.011	mg/m³ Air					
o-Xylene	0.004	U	0.011	mg/m³ Air					
Bromoform	0.011	U	0.026	mg/m³ Air					
1,1,2,2-Tetrachloroethane	0.009	ឋ	0.017	mg/m³ Air					
1,4-Dichlorobenzene	0.006	U	0.015	mg/m³ Air					
1,2-Dichlorobenzene	0.007	U	0.015	mg/m³ Air					
Surrogate: 4-Bromofluorobenzene	31.7			ppbv	31.2		01 4	2-157	

LCS (7I17012-BS1)

Prepared: 09/13/2007 09:00 Analyzed: 09/13/2007 10:26

Analyte	Result Au	o WR	Wills	:Spike 4 evel	Source Result PAREC	%REC	RPD 4
1,1-Dichloroethene	7.26	2.50	ppbv	5.00	145	68-172	
Benzene	5.97	2.50	ppbv	5.00	119	65-152	
Total Light Petroleum Hydrocarbons	6.08	245	ppbv	5.00	122	58-154	
Trichloroethene	6.14	2.50	ppbv	5.00	123	63-155	
Toluene	5.83	2.50	ppbv	5.00	117	66-146	
Chlorobenzene	5.49	2.50	ppbv	5.00	110	64-144	
Surrogate: 4-Bromofluorobenzene	32.8		ppbv	31.2	105	45-141	

LCS (7I17012-BS2)

Prepared: 09/14/2007 09:00 Analyzed: 09/14/2007 11:02

Analyte	Result Fia	g MRL	Walts	Spike Level	Sounce	9/REC Limits 1	RPD Limit Notes
1,1-Dichloroethene	6.33	2.50	ppbv	5.00	127	68-172	
Benzene	6.00	2.50	ppbv	5.00	120	65-152	

OUALITY CONTROL

Volatile Organic Compounds by GCMS - Quality Control

Batch 7117012 - Same

LCS (7I17012-BS2) Continued

Prepared: 09/14/2007 09:00 Analyzed: 09/14/2007 11:02

Analyte	Result Fia	g MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD PD Limit - Notes
Total Light Petroleum Hydrocarbons	5.57	245	ppbv	5.00	111	58-154	-
Trichloroethene	5.90	2.50	ppbv	5.00	118	63-155	
Toluene	5.35	2.50	ppbv	5.00	107	66-146	
Chlorobenzene	5.12	2.50	ppbv	5.00	102	64-144	
Surrogate: 4-Bromofluorobenzene	32.8		ppbv	31.2	105	45-141	

Matrix Spike (7I17012-MS1)

Source: B708022-01

Prepared: 09/13/2007 09:00 Analyzed: 09/13/2007 17:25

				Spike	Source	ov Dec	%REC	RJ Seen 14	D M Notes
1,1-Dichloroethene	Result Fia 7.02	g MRL 2.50	Units ppbv	Level 5.00	Result	140	49-154		
Benzene	5.47	2.50	ppbv	5.00	1.10 U	109	56-171		
Total Light Petroleum Hydrocarbons	6.62	245	ppbv	5.00	151	NR	55-155		QM-05
Trichloroethene	7.00	2.50	ppbv	5.00	1.40 U	140	58-167		
Toluene	6.08	2.50	ppbv	5.00	1.20 U	122	55-164		
Chlorobenzene	5.55	2.50	ppbv	5.00	0.960 U	111	55-170		
Surrogate: 4-Bromofluorobenzene	32.0		ppbv	31.2		103	50-166		

Matrix Spike Dup (7I17012-MSD1)

Source: B708022-01

Prepared: 09/13/2007 09:00 Analyzed: 09/13/2007 17:58

Benzene Total Light Petroleum Hydrocarbons	5.92 6.22	2.50 245	ppbv	5.00 5.00	1.10 U 151	118 NR	56-171 55-155	7.90 6.23	15 24	QM-05
Trichloroethene Toluene	6.37 5.85	2.50 2.50	ppbv	5.00 5.00	1.40 U 1.20 U	127 117	58-167 55-164	9.42 3.86	18 30	
Chlorobenzene	5.51	2.50	ppbv	5.00	0.960 U	110	55-1 7 0	0.723	28	

FLAGS/NOTES AND DEFINITIONS

В	The analyte was detected in the associated method blank.
D	The sample was analyzed at dilution.
J	The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
· U	The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
MRL	Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

																			•	** ** **	·cilco	iaus.cc	,,,,	
Page Cof	Requested Turnacoutto	or hands at the court of the co	seconsone by the WAN	Standard	Expedited	Due	Lath Worksprider		Semple Comments	CASCALIENT	\$1-07 kg	148.000 TI.						DetoTane	DaleTime		111 "GIVE 297	encion they people Unacceptable Acceptable	polar in correction	Appoint by.
ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD 1873 Certal Part Dr. 1975 Present Very Lacendre Part Cert. Solve 231 Cert. 1975 14 Cert. 1975 14 Cert. 1975 15 Cert. 197	Requested Analyses							Preservářka (See Codes) (Centóse se nateszany)									C. Total # of Containers	Harry Received By	8:51 4:16		WIM THE SHIPPER)	INJURY OF THE BUTTON WAS BUTTONIES SHOWN OF THE STREET STR	S INNE
TORIES	¥	44,	,عد	γ~	 명 S	,1- <	سك											B	97	3	5	Ke.	And Constitute	100
LABORA art Cart. Sate carteriors for (point 2016)			3						Topatif of Containers	+		_					k					Z Z	The lenns and	S 6.5
RVATION LABORATORI dati Errains Park Cart. Solo 211 Lacranda, F. XZHESOS Solo 199-307 Far (2011 294-257)		7.100	74.07		પ્રકા	yeste	41-16		Metra: (see codes)	Aik	Aik	Air										WILLIAMS BOLLE	din comments accordance wit	Began S. Uripu
COMSE		075%02407.100	Maturial Records		Reported Continues	Bencard Pryelle	4		Comp / Geth	ਲ	ď	ප							B	<u>r</u>	å	MASS TOWN	r O Other (det) VCO Labs me n	
ENVIRONMENTAL C 1973 Cestal Pet D: Ocean, F. 3024 1937 ERS 534 Fax (437) BENGSS	Propert Number	27.570	Mater	owy Examplifica	Cacke	income Aci	paythugg Agoes		Cofferion Fine	32:E1	12:25	27.55					•	Henguspach	4		Actinguished By		Austenater Auf subuithed in El	ion per
	4	Condiana,							Coffection Date:	4-1-2001	4-1-200	-	-					Date Time		See 1 4 32.0.	2:04 8. 4	00 (120	SW-Surface Water 1999 Note: All semple	
	Simply Market	Coller Associate, Inc. (WOW)	4900 Korv Blud S. Felto	Crewbon, NC 27407	336 952 4903 330852 4904	Samuellas Maries Athabas (Print)	Sampleorial Squality		New A Sample ID (Field Bentification)	Σ	(2) E MW	ML-3 (3)	1					Sarrato Ka Prepaired By		Steel 2 dath report	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2) Extract for = \$600 (200)	name, ibb Graundark SO-Sol BE-Splinst SPI-Sulzon Wart was Washering and a Alfo O Othe (beld) in derivative was soldered in accordance in	

Golder Associates

DATE:	8/9/2007

GROUNDWATER SAMPLING LOG

Project Name:	Material Recover	y, LLC	Project No./Phase No.:	073-96	02407.10	00
Well ID:	MW-1		Sampler(s):	B. Draper	•.	
Well Diameter:	2	inches	Initial Depth to Water:		27.31	feet
Depth to Bottom:	50.65	feet	Water Column Thickness	:	23.34	feet
Pumping Rate:	200	mL/min.	System Volume:	1513		mL
Well Location:	2000 ft. S o	_ f entrance on	Brown Field Road (within pr	operty line	2)	7
Equipment:	Horiba wa	ter quality me	ter, WL indicator, air compres	ssor		
	air tank, po	ortable bladde	er pump, and controller box			

Time	pН	Cond.	Turb.	Dis O2	Temp.	ORP	DTW
	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(oC)	(millivolts)	(feet)
13:11	4.08	0.119	75.0	9.3	20.16	380	27.55
13:14	4.03	0.118	55.0	9.0	19.72	396	27.60
13:17	4.03	0.118	31.5	8.5	19.13	401	27.69
13:20	4.03	0.114	33.5	8.7	19.13	407	27.73
		Samp	oled for NC A	ppendix I @ 1	3:20		
13:38	4.04	0.113	33.8	8.6	19.07	410	27.80
						·	
						-	

Comments (weather conditions, color, type of sample, purge-water management, etc.):

Re-sample of MW-1 from the June 2007 event

Weather Conditions 8/9/07: Sunny, hot; High 104°F, Low 78°F; Pressure: 29.86" Hg; Wind: 4 to 7 mph;

Gusts:	· 26 mph			
Signature:	19 30	Date:	10-24-2001	
QA/QC Sign Off:	Starlie Vin	Date:	10-24-07	

Golder Associates

DATE:	9/0/2007
DAIL:	8/9/2007

GROUNDWATER SAMPLING LOG

Project Name:	Material Recover	y, LLC	Project No./Phase No.:	073-9602	2407.10	0
Well ID:	MW-3		Sampler(s):	B. Draper		
Well Diameter:	2	inches	Initial Depth to Water:		26.95	feet
Depth to Bottom:	34.50	feet	Water Column Thickness	•	7.55	feet
Pumping Rate:	150	mL/min.	System Volume:	1190		mL
Well Location:	100 ft. E-N	E of MW-2 ar	nd 100ft. N of perimeter road			•
Equipment:			eter, WL indicator, air compre	ssor		
			er pump, and controller box			

Time	pН	Cond.	Turb.	Dis O2	Temp.	ORP	DTW
	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(oC)	(millivolts)	(feet)
11:36	3.65	0.745	304	2.7	17.66	433	27.22
11:40	3.70	0.732	194	2.6	17.62	442	27.39
11:44	3.70	0.747	150	2.5	17.56	448	27.41
11:48	3.70	0.785	96.2	2.5	17.51	451	27.51
	Sa	impled for Tri	chlorofluoro	methane & Mo	ercury @ 11:	48	
12:07	3.73	0.889	87.7	3.1	17.56	449	27.51
	-						
					,		

Comments (weather conditions, color, type of sample, purge-water management, etc.):

Re-sample of MW-3 from the June 2007 event

Weather Conditions 8/9/07: Sunny, hot; High 104°F, Low 78°F; Pressure: 29.86" Hg; Wind: 4 to 7 mph;

Gusts: 26 mph

Signature:

QA/QC Sign Off:

Date: 10-24-07

Date: 10-24-07

Golder Associates

DATE:	9/6/2007

GROUNDWATER SAMPLING LOG

Project Name:	Material Recover	y, LLC	Project No./Phase No.:	073-9602	2407.100)
Well ID:	MW-3		Sampler(s):	B. Draper		
Well Diameter:	2	inches	Initial Depth to Water:		27.44	feet
Depth to Bottom:	37.66	feet	Water Column Thickness	:	10.22	feet
Pumping Rate:	200	mL/min.	System Volume:	1160		mL
Well Location:	100 ft. E-N	\overline{E} of MW-2 ar	nd 100ft. N of perimeter road			
Equipment:	Horiba wai	ter quality me	eter, WL indicator, air compre.	ssor		-
	` 		er pump, and controller box			

Time	рH	Cond.	Turb.	Dis O2	Temp.	ORP	DTW
·	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(oC)	(millivolts)	(feet)
1415	4.23	0.661	Cloudy	2.04	17.7	174.3	27.7
14:18	4.23	0.763	Clear	1.81	17.43	178	27.7
14:21	4.23	0.806	Clear	1.66	17.47	176.5	27.7
14:24	4.22	0.73	Clear	1.61	17.39	178	27.7
14:27	4.23	0.724	Clear	1.58	17.33	172.1	27.7
14:30	4.24	0.723	Clear	1.58	17.36	176.3	27.7
·			Sampled	@ 14:30			
14:37	4.28	0.728	Clear	1.68	17.4	165.7	27.7
	,					·	

Comments (weather conditions, color, type of sample, purge-water	r management, etc.):	
2nd Re-sample of MW-2 from the June 2007 event		
Weather Conditions 9/6/07: Sunny, hot; High 95°F, Low 69°F	F; Pressure: 30.21" Hg; Wind: 6 to 9 mph;	
Gusts: 15 mph		•
Signature: QA/QC Sign Off: Alguar V lui	Date: /0 ⋅ 2 ⋅ 4 ⋅ 07 Date: /0 ⋅ 2 ⋅ 5 ⋅ 07	

	APPENDIX B	
<i>{</i>		
; L		

APPENDIX B SAMPLE SUMMARY REPORTS

Sample ID	CDD Leachate			
Sample Date Station	Leachate - CDI	O Typical		
Location Geology	4	••		
Watertype Temperature (℃) pH	Ca-Na-HCO3-S	604		
Conductivity		uS/cm	* · ·	
Sum of Anions		meq/L		
Sum of Cations Balance	-6.71	meq/L %		
Total dissolved solids	2957.40			
Total hardness Alkalinity	1315.41 1223.87	mg/l CaCO3 mg/l CaCO3		
Major ion composition	mg/l	mmol/l	meq/l	
Na	191.40	8.33	8.33	
K	46.00	1.177	1.177	
Ca	419.70	10.47	20.94	
Mg	64.90	2.67	5.34	
Cl	134.70	3.80 6.34	3.80 12.68	
SO4 NO3	608.50	0.34	12.00	
HCO3	1492.20	24.46	24.46	
Ratios			Comparison to	
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	6.47	3.92	0.319	0.194
Ca/SO4	0.69	1.65	0.152	0.364
Na/CI	1.42	2.19	0.556	0.858
Cl/Br			287	648

Sample ID Sample Date Station Location Geology Watertype Temperature (℃) pH	MW-1 8/8/2007 MW-1 Na-Cl			
Conductivity		uS/cm		
Sum of Anions Sum of Cations Balance		meq/L meq/L %		
Total dissolved solids Total hardness Alkalinity	5.91	mg/L mg/I CaCO3 mg/I CaCO3		
Major ion composition Na K Ca Mg CI SO4	mg/l 13.20 4.21 0.24 1.29 24.00 1.40	mmol/l 0.57 0.108 0.01 0.05 0.68 0.01	meq/l 0.57 0.108 0.01 0.11 0.68 0.03	
NO3 HCO3	0.00	0.00	0.00	
Ratios			Comparison to	
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	0.19	0.11	0.319	0.194
Ca/SO4	0.17	0.41	0.152	0.364
Na/Cl Cl/Br	0.55	0.85	0.556 287	0.858 648

Sample ID	MW-3			
Sample Date				
Station	MW-3			
Location Geology				
Watertype Temperature (℃)	Ca-Mg-Na-Cl			
pH				
Conductivity		uS/cm		
Sum of Anions	1 14	meq/L		
Sum of Cations		meq/L		
Balance	69.95			
Total dissolved solids	169.12			
Total hardness		mg/l CaCO3		
Alkalinity	0.00	mg/l CaCO3		
Major ion composition	mg/l	mmol/I	meq/l	
Na	28.40	1.24	1.24	
K	13.00	0.332	0.332	
Ca	63.20	1.58	3.15	
Mg	20.80	0.86	1.71	
CI	39.00	1.10	1.10	
SO4	1.80	0.02	0.04	
NO3				
HCO3	0.00	0.00	0.00	
Ratios			Comparison to	Seawater
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	3.04	1.84	0.319	0.194
Ca/SO4	35.11	84.10	0.152	0.364
Na/Cl	0.73	1.12	0.556	0.858
CI/Br			287	648

Sample ID Sample Date	1% Mix			
Station Location	1% Mixing			
Geology Watertype Temperature (℃) pH	Na-CI-HCO3			
Conductivity		uS/cm		
Sum of Anions Sum of Cations Balance		meq/L meq/L %		
Total dissolved solids Total hardness Alkalinity	73.47 19.01 12.24			
Major ion composition	mg/l	mmol/l	meq/l	
Na	14.98	0.65	0.65	
K	4.63	0.118	0.118	
Ca	4.43	0.11	0.22	
Mg	1.93	0.08	0.16	
CI SO4	25.11 7.47	0.71 0.08	0.71 0.16	
NO3		0.06	0.10	
HCO3	14.92	0.24	0.24	
Ratios			Comparison to	Seawater
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	2.30	1.39	0.319	0.194
Ca/SO4	0.59	1.42	0.152	0.364
Na/CI CI/Br	0.60	0.92	0.556 287	0.858 648

Sample ID	2% Mix			
Sample Date Station Location	2% Mixing			
Geology Watertype Temperature (℃) pH	Na-Ca-CI-HCO	3		
Conductivity		uS/cm		
Sum of Anions Sum of Cations Balance		meq/L meq/L %		
Total dissolved solids Total hardness Alkalinity	102.59 32.09 24.47			
Major ion composition	mg/l	mmol/l	meq/l	
Na	16.76	0.73	0.73	
K	5.05	0.129	0.129	
Ca	8.63	0.22	0.43	
Mg Cl	2.56 26.21	0.11 0.74	0.21 0.74	
SO4	13.54	0.74	0.28	
NO3	13.54	0.14	0.20	
HCO3	29.84	0.49	0.49	
Ratios			Comparison to	Seawater
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	3.37	2.04	0.319	0.194
Ca/SO4	0.64	1.53	0.152	0.364
Na/Cl Cl/Br	0.64	0.99	0.556 287	0.858 648

Sample ID	3% Mix			
Sample Date Station Location	3% Mixing			
Geology Watertype Temperature (℃) pH	Na-Ca-CI-HCO	3-SO4		
Conductivity		uS/cm		
Sum of Anions Sum of Cations Balance		meq/L meq/L %		
Total dissolved solids Total hardness Alkalinity		mg/L mg/l CaCO3 mg/l CaCO3		
Major ion composition	mg/l	mmol/l	meq/l	
Na	18.55	0.81	0.81	
K	5.46	0.140	0.140	
Ca	12.82	0.32	0.64 0.26	
Mg	3.20 27.32	0.13 0.77	0.28	
CI SO4	19.61	0.20	0.41	
NO3	13.01	0.20	0.41	
НСОЗ	44.77	0.73	0.73	
Ratios			Comparison to	
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	4.01	2.43	0.319	0.194
Ca/SO4	0.65		0.152	0.364
Na/Cl Cl/Br	0.68	1.05	0.556 287	0.858 648

Sample ID Sample Date	4% Mix			
Station Location	4% Mixing			
Geology Watertype Temperature (℃) pH	Na-Ca-HCO3-0	CI-SO4		
Conductivity		uS/cm		
Sum of Anions Sum of Cations Balance		meq/L meq/L %		
Total dissolved solids Total hardness Alkalinity		mg/L mg/I CaCO3 mg/I CaCO3		
Major ion composition	mg/l 20.33	mmol/l 0.88	meq/l 0.88	
K	20.33 5.88	0.150	0.150	
Ca	17.02	0.42	0.85	
Mg	3.83	0.16	0.32	
CĬ	28.43	0.80	0.80	
SO4 NO3	25.68	0.27	0.54	
HCO3	59.69	0.98	0.98	
Ratios			Comparison to	Seawater
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	4.44	2.69	0.319	0.194
Ca/SÕ4	0.66	1.59	0.152	0.364
Na/Cl Cl/Br	0.72	1.10	0.556 287	0.858 648

Sample ID	5% Mix			
Sample Date	576 IVIIX			
Station	5% Mixing			
Location	· •			
Geology	0 11 11000	N 004		
Watertype	Ca-Na-HCO3-0	JI-SU4		
Temperature (℃) pH				
Conductivity		uS/cm		
· ·				
Sum of Anions		meq/L		
Sum of Cations		meq/L		
Balance	-3.20	%		
Total dissolved solids	190.00	ma/l		
Total hardness		mg/l CaCO3		
Alkalinity		mg/l CaCO3		
Major ion composition	mg/l	mmol/l	•	
Na	22.11	0.96		
K	6.30	0.161	0.161	
Ca	21.21	0.53		
Mg	4.47	0.18 0.83		
CI SO4	29.54 31.76	0.83		
NO3	31.70	0.33	0.00	
HCO3	74.61	1.22	1.22	
11000	74.01	1 × 3000-3000		
Ratios			Comparison to	Seawater
	mg/l	mmol/l		mmol/l
Ca/Mg	4.74	2.88		0.194
Ca/SO4	0.67	1.60		0.364
Na/Cl	0.75	1.15		0.858
CI/Br			287	648

Sample ID	Optimized Sample (6%)			
Sample Date Station Location	Optimized San	ple		
Geology Watertype Temperature (°C) pH	Ca-Na-HCO3-(CI-SO4		
Conductivity		uS/cm		
Sum of Anions	3.12	meq/L		
Sum of Cations		meq/L		
Balance	-3.66			
Total dissolved solids	219.13	ma/L		
Total hardness	84.50			
Alkalinity		mg/l CaCO3		
Major ion composition	mg/l	mmol/I	meq/l	
Na	23.89	1.04	1.04	
K	6.72	0.172	0.172	
Ca	25.41	0.63	1.27	
Mg	5.11	0.21	0.42	
CI	30.64	0.86	0.86	
SO4 NO3	37.83	0.39	0.79	
НСОЗ	89.53	1.47	1.47	
Ratios			Comparison to	Seawater
	mg/l	mmol/l	mg/l	mmol/l
Ca/Mg	4.97	3.02	0.319	0.194
Ca/SO4	0.67	1.61	0.152	0.364
Na/CI	0.78	1.20	0.556	0.858
Cl/Br			287	648

Facility Activity Tracker Report fo MATERIAL RECOVERY/ BROWNFIELD RD C&D LANDFILL

00000000000000000000	***********	BROWN	***********	******************	County Wake Status Existing Hydro
	X Ref#	Date	Phase	Function	Facility Notes (Exceed Barry Mu
RCO2312		05/14/07		GWDM Event	December 2006 sampling. Dekot-Acotore 1.6 Jrichlandiano 3,3
RCO3175		12/19/06	GEN	Application	WCA Waste Corp. application for permit, Response to comments.
RCO823	-	11/16/06	ENF	General	Letter from Stephen R. Berlin in response to Paul Crissman's letter, dated August 15, 2006, in regards to the change in ownership of facilities permitted to MRR Southern, LLC and its subsudaries which facilities are owned and operated by WCA Waste Corporation, Inc.
RCO378		08/26/06	ENF	General	Letter from Paul Crissman to Tom J. Fatjo, Jr. Of WCA Waste Corporations, Inc. requesting more information involving facilities permitted to MRR Southern, LLC and its subsidaries which facilities are owned and operated by WCA Waste Corporation, Inc.
RCO829		06/21/06	GWM	GWDM Event	Material Recovery C&D 6/06 sampling exceedances: MW-3 = Ba, MW-5 = Pb
RCO2107		06/12/06	GWM	GWDM Event	December 2005 sampling. Paper report and CD. Data loaded from CD. Exceedances: Lead, Barium. Hits: Chromium. Filtered Lead results show decrease in levels versus unfiltered. Filtered Barium results are the same as unfiltered results. Turbidity may explain the Lead results, but not barium or chromium.
RCO231		05/26/06	PTC	General	Cover letter
RCO230		05/26/06	PTO	General	PTC
RCO232	RCO230	05/22/06	PTC	General	Certification for construction/operation of Phase I Cell 3
RCO2108		10/13/05	GWM	GWDM Event	June 2005 sampling. Data on CD and has been loaded. Exceedances: Barium and Lead.
RCO3123		04/19/05	PTO	Modification	Certified copy of the minutes of the Wake County Board of Commissioners Meeting dated 2-21-05. Franchise approved - WCA Waste Corporation, LP
RCO3118	,	04/04/05	PTO	Modification	Cover letter for request for permit issuance. WCA of Wake County LP now owns Material Recovery, LLC
RCO2106		04/01/05	GWM	GWDM Event	orginal db ID 207
RCO3232		01/15/03	PTC	Issuance	Permit to Construct - Phase 1, 19.0 acres, consisting of subcells A, B, and C.